PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Assessment of Green Infrastructure Influence on Hydrologic Effectiveness in a Suburban Residential Development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Applying green infrastructure measures helps to retain water in the land during wet periods, which in turn makes it more available during periods of drought. Water retention reduces the volume of rainwater that transforms into surface runoff, allowing for the increase in the intensity of evapotranspiration and infiltration, which helps to establish a catchment with a balanced hydrologic cycle that’s effectively more resistant to the consequences of climate change. With increasing popularity of introducing low impact development (LID) solutions in highly urbanised catchments characterised by a high runoff coefficient, it is important also to reduce rainwater runoff in residential areas with lower density of housing. This work presents a numerical assessment of green infrastructure (green roofs, raingardens, permeable paving and rainwater harvesting) performance in increasing retention in a catchment area consisting of single-family houses. The numerical model of potential residency in Ożarów, Poland was developed in SWMM 5.2. software, replicating local conditions with input infiltration data collected through on site and laboratory testing, as well as data gathered during a period of registering local evaporation and precipitation conditions. After running a series of simulations of three rain events, varying in their duration and intensity, the model was enhanced with green infrastructure solutions by the utilisation of LID Controls option in SWMM. With rainfall simulations resulting in varying rainwater outflow hydrographs and with differences in the volume of collected rainwater outflow, the results of LID application were consistent with the reduction of the peak rainwater outflow (reduction rate 61.90–67.99%), as well as the decrease in rainwater outflow volume (reduction rate 61.17–62.12%). This research promotes the hydrologic effectiveness of introducing green infrastructure in low density housing establishments.
Rocznik
Strony
187--200
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Abdollahian S., Kazemi H., Rockaway T., Gullapalli V. 2018. Stormwater Quality Benefits of Permeable Pavement Systems with Deep Aggregate Layers. Environments, 5(6), 68. https://doi.org/10.3390/environments5060068
  • 2. Baryła A., Karczmarczyk A., Bus A. 2018. Role of substrates used for green roofs in limiting rainwater runoff. Journal of Ecological Engineering, 19(5), 86–92. https://doi.org/10.12911/22998993/91268
  • 3. Burszta-Adamiak E., Biniak-Pieróg M., Dąbek P.B., Sternik A. 2023. Rain garden hydrological performance- Responses to real rainfall events. Science of the Total Environment, 887, 164153. https://doi.org/10.1016/j.scitotenv.2023.164153
  • 4. Campisano A., Modica C. 2016. Rainwater harvesting as source control option to reduce roof runoff peaks to downstream drainage systems. Journal of Hydrodynamics, 18(1), 23–32. https://doi.org/10.2166/hydro.2015.133
  • 5. Demuzere M., Orru K., Heidrich O., Olazabal E., Geneletti D., Orru H., Bhave A.G., Mittal N., Feliu E., Faehnle M. 2014. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure, Journal of Environmental Management, 146, 107–115. https://doi.org/10.1016/j.jenvman.2014.07.025
  • 6. Ekmekcioğlu Ö., Yılmaz M., Özger M., Tosunoğlu F. 2021. Investigation of the low impact development strategies for a highly urbanized area via auto-calibrated Storm Water Management Model (SWMM). Water Science & Technology, 9, 2194. https://doi.org/10.2166/wst.2021.432
  • 7. Farreny R., Gabarrell X., Rieradevall. 2011. CostEfficiency of rainwater harvesting strategies in dense Mediterranean neighborhoods. Resources, Conservation and Recycling, 55(7), 686–694. https://doi.org/10.1016/j.resconrec.2011.01.008
  • 8. Fatone F., Szeląg B., Kiczko A., Majerek D., Majewska M., Drewnowski J., Łagód G. 2021. Advanced sensitivity analysis of the impact of the temporal distribution and intensity of rainfall on hydrograph parameters in urban catchments. Hydrology and Earth System Sciences, 25, 549–5516. https://doi.org/10.5194/hess-25-5493-2021
  • 9. Fenoglio M.S., González E., Tavella J., Beccacece H., Moreno M.L., Fabian D., Salvo A., Estallo E.L., Calviño A. 2023. Native plants on experimental urban green roofs support hogher community- level insect abundance than exotics. Urban Forestry & Urban Greening, 86, 128039. https://doi.org/10.1016/j.ufug.2023.128039
  • 10. Godyń I. 2022. Economic Incentives in Stormwater Management: A Study of Practice Gaps in Poland. Water, 14(23), 3817. https://doi.org/10.3390/w14233817
  • 11. Gong Y., Yin D., Fang X., Zhai D., Junqi L. 2018. Rainwater retention effect of extensive green roofs monitored under natural rainfall events – a case study in Beijing. Hydrology Research, 49(6), 17731787. https://doi.org/10.2166/nh.2018.144
  • 12. Gui Y., Zhang R. 2020. Landscape design of rural rainwater utilization based on LID concept. Proc. IOP Conference Series Earth and Environmental Science, 598(1), 012010. https://doi.org/10.1088/1755-1315/598/1/012010
  • 13. Hincks S., Carter J., Connelly A. 2023. A new typology of climate change risk for European cities and regions: Principles and applications. Global Environemntal Change, 83, 102767. https://doi.org/10.1016/j.gloenvcha.2023.102767
  • 14. Iwanek I., Suchorab P. 2023. Profitability Analysis of selected low impact development methods for decentralised rainwater management: A case study from Lublin Region, Poland. Water, 15(14), 2601. https://doi.org/10.3390/w15142601
  • 15. Jin Y., Lee S., Kang T., Park J., Kim Y. 2023. Capacity optimization of rainwater harvesting systems based on a cost-benefit analysis: A financial support program review and parametric sensitivity analysis. Water, 15(1), 186. https://doi.org/10.3390/w15010186
  • 16. Kalfas, D., Kalogiannidis, S., Papaevangelou, O., Chatzitheodoridis, F. 2024. Assessing the connection between land use planning, water resources, and global climate change. Water, 16, 333. https://doi.org/10.3390/w16020333
  • 17. Kasprzyk M., Szpakowski W., Poznańska E., Boogaard F.C., Bobkowska K., Gajewska M. 2022. Technical solutions and benefits of introducing rain gardens – Gdańsk case study. Science of the Total Environment, 835, 155487. https://doi.org/10.1016/j.scitotenv.2022.155487
  • 18. Kim H.W., Li M.-H., Kim H., Lee H.K. 2015. Costbenefit analysis and equitable cost allocation for a residential rainwater harvesting system in the city of Austin, Texas. International Journal of Water Resources Development, 32, 749–764. https://doi.org/10.1080/07900627.2015.1073142
  • 19. Koj J. 2020. Suburban development and globalization: diversity of suburbanization processes worldwide and in Poland. Urban Development Issues, 66(1), 15–23. https://doi.org/10.2478/udi-2020-0007
  • 20. Putri F.K., Hidayah E., Ma’ruf M.F. 2023. Enhancing stormwater management with low impact development (LID): A review of the rain barrel, bioretention, and permeable pavement applicability in Indonesia. Water Science and Technology, 87(9), 2345–2361. https://doi.org/10.2166/wst.2023.095
  • 21. Lin J.-Y., Yuan T.-C., Chen C.-F. 2021. Water retention performance at low-impact development (LID) f ield sites in Taipei, Taiwan. Sustainability, 13, 759. https://doi.org/10.3390/su13020759
  • 22. Manso M., Teotónio I., Silva C.M., Cruz C.O. 2021. Green roof and green wall benefits and costs: A review of the quantative evidence. Renewable and Sustainable Energy Reviews, 135, 110111. https://doi.org/10.1016/j.rser.2020.110111
  • 23. Musz-Pomorska A., Widomski M.K., Gołębiowska J. 2020. financial sustainability of selected rain water harvesting systems for single-family house under conditions of eastern Poland. Sustainability, 12(12), 4853. https://doi.org/10.3390/su12124853
  • 24. Musz-Pomorska A., Widomski M.K., Gołębiowska J. 2024. financial aspects of sustainable rainwater management in small-scale urban housing communities. Sustainability, 16(2), 780. https://doi.org/10.3390/su16020780
  • 25. Niazi M., Nietch C., Maghrebi M., Jackson N., Bennett B.R., Tryby M., Massoudieh A. 2017. Storm water management model: performance review and gap analysis. Journal of Sustainable Water in the Built Environment, 3(2). https://doi:10.1061/jswbay.0000817
  • 26. Notaro V., Liuzzo L., Freni G. 2016. Reliability analysis of rainwater harvesting systems in southern Italy. Procedia Engineering, 162, 373–380. https://doi.org/10.1016/j.proeng.2016.11.077
  • 27. Paithankar D.N., Taji S.G. 2020. Investigating the hydrological performance of green roofs using storm water management model. Materials Today: Proceedings, 32, 943–950. https://doi.org/10.1016/j.matpr.2020.05.085
  • 28. Palla A., Gnecco I., La Barbera P. 2017. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale. Journal of Environmental Management, 191, 297305. https://doi.org/10.1016/j.jenvman.2017.01.025
  • 29. Petrucci G., Deroubaix J.F. de Gouvello B., Deutsch J.C., Bompard P., Tassin B. 2012. Rainwater harvesting to control stormwater runoff in suburban areas. An experimental case-study. Urban Water Journal, 9(1), 45–55. https://doi.org/10.1080/1573 062X.2011.633610
  • 30. Piasecki A., Pilarska A. 2023. Rainwater management in urban areas in Poland: literature review. Bulletin of Geography. Physical Geography Series, 25, 5–21. https://doi.org/10.12775/bgeo-2023-0006
  • 31. Quinn R., Rougé C., Stovin V. 2021. Quantifying the performance of dual-use rainwater harvesting systems. Water Research X, 10, 100081. https://doi.org/10.1016/j.wroa.2020.100081
  • 32. Raimondi A., Quinn R., Abhijith G., Becciu G., Ostfeld A. 2023. Rainwater harvesting and treatment: state of the art and perspectives. Water, 15(8), 1518. https://doi.org/10.3390/w15081518
  • 33. Sauri D., Garcia X. 2020. Non-conventional resources for the coming drought: the development of rainwater harvesting systems in a Mediterranean suburban area. Water International, 45(2), 125–141. https://doi.org/10.1080/02508060.2020.1725957
  • 34. Severis R.M., da Silva F.A., Wahrlich J., Skoronski E., Simioni F.J. 2019. Economic analysis and riskbased assessment of the financial losses of domestic rainwater harvesting systems. Resources, Conservation and Recycling, 146, 206–217. https://doi.org/10.1016/j.resconrec.2019.03.040
  • 35. Shafique M., Kim R., Rafiq M. 2018. Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 90, 757–773. https://doi.org/10.1016/j.rser.2018.04.006
  • 36. Shakya R., Ahiablame L. 2021. A synthesis of social and economic benefits linked to green infrastructure. Water, 13, 3651. https://doi.org/10.3390/w13243651
  • 37. Shishegar N. 2012. Green roofs: Enhancing energy and environmental performance of buildings. International Conference on Clean Energy, 10–12.
  • 38. Singer M.N., Hamouda M.A., El-Hassan H., Hinge G. 2022. Permeable pavement systems for effective management of stormwater quantity and quality: A bibliometric analysis and highlights of recent advancements. Sustainability 14(20), 13061. https://doi.org/10.3390/su142013061
  • 39. Szeląg B., Łagód G., Musz-Pomorska A., Widomski M.K., Stránský D., Sokáč M., Pokrývková J., Babko R. 2022a. Development of rainfall-runoff models for sustainable stormwater management in urbanized catchments. Water, 14, 1997. https://doi.org/10.3390/w14131997
  • 40. Szeląg B., Suligowski R., De Paola F., Siwicki P., Majerek D., Łagód G. 2022b. Influence of urban catchment characteristics and rainfall origins on the phenomenon of stormwater flooding: Case study. Environmental Modelling and Software, 150, 105335. https://doi.org/10.1016/j.envsoft.2022.105335
  • 41. Szeląg B., Kiczko A., Łagód G., De Paola F. 2021. Relationship between rainfall duration and sewer system performance measures within the context of uncertainty. Water Resources Management, 25, 5073–5087. https://doi.org/10.1007/s11269-021-02998-x
  • 42. Wałęga A., Cebulska M., Gądek W. 2018. The use of bioretention cell to decreasing outflow from parking lot. Journal of Water and Land Development, 36, 173–181. https://doi.org/10.2478/jwld-2018-0017
  • 43. Widomski M.K., Musz-Pomorska A., Gołębiowska J. 2023. Hydrologic effectiveness and economic eff iciency of green architecture in selected urbanized catchment. Land 23, 1312. https://doi.org/10.3390/land12071312
  • 44. Zhu H., Yu M., Zhu J., Lu H., Cao R. 2019. Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. International Journal of Transportation Science and Technology, 8, 373382. https://doi.org/10.1016/j.ijtst.2018.12.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5af4a5e1-4707-4711-bf01-0cb3562494c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.