PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some differential equations of elasticity and their lie point symmetry generators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The formal models of physical systems are typically written in terms of differential equations. A transformation of the variables in a differential equation forms a symmetry group if it leaves the differential equation invariant. Symmetries of differential equations are very important for understanding of their properties. It can be said that the theory of Lie group symmetries of differential equations is general systematic method for finding solutions of differential equations. Despite of this fact, the Lie group theory is relatively unknown in engineering community. The paper is devoted to some important questions concerning this theory and for several equations resulting from the theory of elasticity their Lie group infinitesimal generators are given.
Rocznik
Strony
99--102
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechatronics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
autor
  • Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechatronics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
  • Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechatronics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
Bibliografia
  • 1. Azad H., Mustafa M. T., Arif A. F. M. (2010), Analytic Solutions of Initial-Boundary-Value Problems of Transient Conduction Using Symmetries, Applied Mathematics and Computation, Vol. 215, 4132- 4140.
  • 2. Bluman G. W., Cole J. D. (1974), Similarity Methods for Differential Equations, Springer-Verlag, New York, 1974.
  • 3. Champagne B., Hereman W., Winternitz P. (1991), The Computer Calculation of Lie Point Symmetries of Large Systems of Differential Equations, Computer Physics Communications, Vol. 66, 319-340.
  • 4. Drew M. S., Kloster S. (1989), Lie Group Analysis and Similarity Solutions for the Equation , Nonlinear Analysis, Theory Methods Applications, Vol. 13, No. 5, 1989, 489- 505.
  • 5. Euler N., Steeb W.-H. (1992), Continuous Symmetries, Lie Algebras and Differential Equations, Brockhaus AG, Mannheim.
  • 6. Head A. K. (1993), LIE a PC Program for Lie Analysis of Differential Equations, Computer Physics Communications, Vol. 71, 241-248.
  • 7. Head A. K. (1996), Instructions for Program LIE ver. 4.5, CSIRO, Australia.
  • 8. Lie S. (1891), Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig.
  • 9. Lie S. (1896), Geometrie der Berührungstransformationen, Teubner, Leipzig.
  • 10. Olver P. J. (1986), Applications of Lie Groups to Differential Equations, Springer-Verlag, New York.
  • 11. Sansour C., Bednarczyk H. (1991), Shells at Finite Rotations with Drilling Degrees of Freedom, Theory and Finite Element Formulation, In: Glowinski R., Ed., Computing Methods in Applied Sciences and Engineering, Nova Sci. Publish., New York, 163-173.
  • 12. Sansour C., Bednarczyk H. (1995), The Cosserat Surface as a Shell Model, Theory and Finite-Element Formulation, Computer Methods in Applied Mechanical Engineering, Vol. 120, 1-32.
  • 13. Sansour C., Bufler H. (1992), An Exact Finite Rotation Shell Theory, its Mixed Variational Formulation, and its Finite Element Implementation, International Journal for Numerical Methods in Engineering, Vol. 34, 73-115.
  • 14. Schwarz F. (1982), Symmetries of the Two-Dimensional Korteweg-de Vries Equation, Journal of the Physical Society of Japan, Vol. 51, No. 8, 2387-2388.
  • 15. Schwarz F. (1984), Lie Symmetries of the von Kármán Equations, Computer Physics Communications, Vol. 31, 113-114.
  • 16. Schwarz F. (1988), Symmetries of Differential Equations from Sophus Lie to Computer Algebra. SIAM Review, Vol. 30, No. 3, 450- 481.
  • 17. Sherring J., Head A. K., Prince G. E. (1997), DIMSYM and LIE: Symmetry Determination Packages. Algorithms and Software for Symbolic Analysis of Nonlinear Systems, Mathematical and Computer Modelling, Vol. 25, No. 8-9, 153-164.
  • 18. Simo J. C., Fox D. D. (1989), On a Stress Resultant Geometrically Exact Shell Model, Part I.: Formulation and Optimal Parametrization, Computer Methods in Applied Mechanics and Engineering, Vol. 72, 267-304.
  • 19. Vu K. T., Jefferson G. F., Carminati J. (2012), Finding Higher Symmetries of Differential Equations Using the MAPLE Package DESOLVII, Computer Physics Communications, Vol. 183, No. 4, 1044-1054.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5af42c33-dec5-4e6d-a7d3-5fa76f7b2049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.