
acta mechanica et automatica, vol.8 no.2 (2014), DOI 10.2478/ama-2014-0018 

99 

SOME DIFFERENTIAL EQUATIONS OF ELASTICITY AND THEIR LIE POINT SYMMETRY GENERATORS 

Jozef BOCKO*, Iveta GLODOVÁ*, Pavol LENGVARSKÝ* 

*Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechatronics,  
Technical University of Košice, Letná 9, 042 00 Košice, Slovakia 

jozef.bocko@tuke.sk, iveta.glodova@tuke.sk, pavol.lengvarsky@tuke.sk  

Abstract: The formal models of physical systems are typically written in terms of differential equations. A transformation of the variables 
in a differential equation forms a symmetry group if it leaves the differential equation invariant. Symmetries of differential equations 
are very important for understanding of their properties. It can be said that the theory of Lie group symmetries of differential equations 
is general systematic method for finding solutions of differential equations. Despite of this fact, the Lie group theory is relatively unknown 
in engineering community. The paper is devoted to some important questions concerning this theory and for several equations resulting 
from the theory of elasticity their Lie group infinitesimal generators are given.  
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1. INTRODUCTION 

The group theory was discovered by Évariste Galois, who ap-
plied it to study of polynomial equations. The so-called finite 
groups were used as permutation groups and later the symmetry 
groups were applied in geometry. The idea of continuous groups 
was first used by Norwegian mathematician Sophus Lie for de-
scription of properties of differential equations. The application 
of continuous groups started systematically in his works and the 
terms Lie group and Lie algebra are used in honor of this great 
mathematician. The theory of Lie groups is applied in many differ-
ent areas of mathematics, physics and engineering (Azad et al., 
2010; Drew and Kloster, 1989; Olver, 1986; Sansour and Bednar-
czyk, 1995; Schwarz, 1982, 1984, 1988; Simo and Fox, 1989). 
In the field of physics work of German mathematician Emmy 
Noether, who found connection between symmetries of differential 
equations and the conservation laws, is very known. The paper 
describes Lie theory of symmetries of differential equations and 
for some equations resulting from the elasticity theory infinitesimal 
generators of their Lie groups are given. The generators have 
been found by program for symbolic manipulation. More details 
concerning Lie symmetries of differential equations can be found 
in Drew and Kloster (1989); Euler and Steeb (1992), Head (1993, 
1996), Sansour and Bufler (1992). 

2. DIFFERENTIAL EQUATIONS AND LIE POINT GROUPS 

Starting point is the description of the system of partial differ-
ential equations:  

1 ,...,( , , , ,..., ) 0
k

a a a a

v i i ij i iW x u u u u                                         (1) 

       , where             are the functions 

depending on independent variables             and: 

1

1 1

...

,...,

1
...





 



 

n

n n

i i

i i i i

n

u
u

x x
                                                             (2) 

are the partial derivatives.  
Shortly, a Lie group is a group and a manifold at the same 

time. For any two points a and b in the manifold, there exists 
multiplication operation giving ab and this group operation has 
a continuous structure of the manifold. 

Change of independent and dependent variables can be rep-
resented by the finite transformations:  
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where     is a parameter of a group. Expanding (3) by Taylor 
series at     gives relations: 
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with the substitutions: 
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The value     is the identity element of the group. Equa-
tions (5) allow us to write infinitesimal generator, or Lie point 
symmetry vector field by relation: 
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The transformation of partial derivatives influences the so-
called  -th prolongation of a vector field  : 
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where the functions       
  describe the transformations of partial 

derivatives of order  . The functions       
  are determined 

according to relations: 
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is the operator of total differentiation with respect to the 

independent variable   . The group is symmetry of equation 
system (2) if and only if the invariant surface condition (symmetry 
condition): 
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is satisfied, where all     ,        . The components    
and    of the infinitesimal generator   are determined from 
equations (11). 
    The infinitesimal generator and Lie group are connected 
by relation: 
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Here, the Greek letter   is reserved for the parameter of the 

group and accordingly it does not represent partial differentiation. 
The function   undergoes the transformation by the group element 

   in accordance with relation: 
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where   represents the identity function       .  
Calculation of the Lie vector fields from equations (11) 

is tedious work. It involves a large amount of symbolic calculations 
that is better done by computer. Fortunately, different packages 
in computer algebra systems exist implementing Lie symmetry 
computations (Champagne et al., 1991; Lie, 1891, 1896; Vu et al., 
2012). 

3. THICK-WALLED PIPE 

Thick-walled pressure vessels and pipes have many 
applications in engineering practice. Differential equation 
describing radial stress in a pipe is:  
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where    ) is the radial stress and   is the independent variable 
representing radius. As was mentioned above, there are number 
programs for solving determining equations of the vector fields 
resulting from equation (11). They work under different systems 
for symbolic manipulations, e.g. Reduce, Mathematica, Maple, 
and so on (Champagne et al., 1991; Lie, 1891, 1986; Vu et al., 
2012). In our case we have used DESOLVII [19] working under 

system Maple. For equation (14) the program DESOLVII gives us 
the following Lie symmetry vector fields: 
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These vector fields are infinitesimal generators of Lie groups 
of symmetries of differential equation describing radial stress 
in thick-walled pipe. The corresponding Lie groups can be 
established from vector fields according to equation (12). 

4. AXISYMMETRIC PLATE 

Differential equation for deformation of axisymmetric plate 
loaded by uniformly distributed load can be written as: 
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where    )  is the deflection of the plate at the radius  , the 

constant   
 

 
 depends on the constant uniformly distributed 

load   and the constant plate stiffness  . The plate stiffness is 
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where   and   is Young modulus and Poisson ratio of plate 
material, respectively;   is the plate thickness.  

Here again the program DESOLVII has been used for solution 
of determining equations that correspond to the equation (16). 
Resulting infinitesimal generators are: 
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5. VIBRATING BEAM WITH DAMPING 

  Differential equation for vibration of a beam with damping is:  
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where        is the deflection of beam at the position   and the 

time instant  . Constant 
  

   
  

  
 depends on the material density 

 , Young modulus  , the cross-section area   and moment 
of inertia of the beam’s cross-section  .   is the coefficient 
of internal damping of material. 

Determining equations (11) for differential equation (19) have 
been solved by program DESOLVII. Resulting infinitesimal 
generators are: 
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Here, function        is any solution of equation (19). 

The vector field    represents simple shifting in time, the vector 
   shifting in the direction  . 

6. MEMBRANE 

Differential equation of a stretched membrane in the plane 
    which is loaded by the constant pressure   can be written 
in the form:  
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where        is the deflection of a membrane perpendicular to 

the membrane plane and   is the tension force per unit length 
of the membrane. Here, the infinitesimal generators of equation 
(21) are:  
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The functions        ,        ,         represent any 
solution of differential equation (21). 

7. PLATE ON ELASTIC FUSS-WINKLER FOUNDATION 

Differential equation describing deformation of a plate 
on elastic Fuss-Winkler foundation is: 
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where        is the deflection of the plate at the point with the 
coordinates    , constant   is the plate stiffness given 

by equation (17),   is the coefficient of subgrade reaction 

and        is the pressure acting on the plate. The Lie group 
generators of given differential equation are: 

 

1

2

3

4

5 ,









 
 

 











U

U

U

U

U

x

y

x y
y x

w
w

h x y
w

                                              (24) 

Here,        is any solution of differential equation (23). 

The vector fields   ,    represent simple shifting along 

the coordinate   and   respectively.  
Let us now compute less trivial example of transformation that 

belong to the Lie vector: 
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For the transformation of the independent variable   we have: 
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For the independent variable   we have similar relation: 
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We see that vector    is connected with the rotation 

of variables in the plain   . 
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All transformation groups that belong to vectors (24) are: 
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The groups (28) represent transformations that convert 
solutions of differential equation (23) into new solutions of the 
same equation. 

8. CONCLUSIONS 

The notion of Lie group is very important in the current 
mathematics and physics. The paper analyzes differential 
equations resulting from different branches of elasticity theory 
from the point of view of their symmetries. Lie vectors 
of corresponding Lie groups symmetries of differential equations 
have been computed by computer program DESOLVII. 
Infinitesimal generators of Lie group symmetries give us additional 
information that is not visible during classical solutions 
of differential equations. 
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