PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bandwidth Enhancement of circular structure microstrip antenna based on inverted C-shaped ground configuration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Designing microstrip antennas with wide bandwidth and low-frequency capabilities presents several challenges. These difficulties mainly arise due to the relatively small size of the microstrip in comparison to the operating frequency. Therefore, achieving a combination of enhanced bandwidth and lower-frequency cut-off becomes crucial to support a broad frequency range of communication technologies. This paper presents a method for enhancing the bandwidth of a circular microstrip antenna based on an inverted C-shaped ground configuration. The proposed method successfully creates an antenna with extended bandwidth while lowering the operating frequency. The antenna was simulated and then fabricated using an RO5880 duroid substrate with a relative permittivity of 2.2, a thickness of 1.575 mm, and a loss tangent of 0.0009. The simulation and measurement results demonstrate that the antenna can operate effectively within a wide frequency range of 3.5 GHz to 18 GHz. Additionally, utilizing this method enables the antenna to function at even lower frequencies and wider bandwidth without the need for additional dimensions.
Twórcy
  • Universitas Sultan Ageng Tirtayasa
autor
  • Universitas Sultan Ageng Tirtayasa
  • Department of Telecommunication Engineering, Jl. G.A. Siwabessy, Depok, Indonesia
autor
  • Politeknik Penerbangan Indonesia
  • Universitas Riau
autor
  • Universitas Trisakti
  • Universitas Sultan Ageng Tirtayasa
Bibliografia
  • [1] W. Hong et al., “Multibeam antenna technologies for 5g wireless communications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6231-6249, 2017, http://doi.org/10.1109/TAP.2017.2712819.
  • [2] T. Li and Z. N. Chen, “Shared-surface dual-band antenna for 5g applications,” IEEE Trans. Antennas Propag., vol. 68, no. 2, pp. 1128-1133, 2019, http://doi.org/10.1109/TAP.2019.2938584.
  • [3] W. Hong, K.-H. Baek, and S. Ko, “Millimeter-wave 5g antennas for smartphones: overview and experimental demonstration,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6250-6261, 2017, http://doi.org/10.1109/TAP.2017.2740963.
  • [4] K. S. Radhakrishna, M. S. Shakhirul, Y. S. Lee, K. N. Khairina, and A. R. A. Syafiqah, “Investigate bending effect of wearable gps patch antenna with denim and polyester fabric substrate,” Int. J. Electron. Telecommun., vol. 69, no. 2, pp. 225-231, 2023, http://doi.org/10.24425/ijet.2023.144354.
  • [5] S. H. Hussein and K. K. Mohammed, “A dual-band compact integrated rectenna for implantable medical devices,” Int. J. Electron. Telecommun., vol. 69, no. 2, pp. 239-245, 2023, http://doi.org/10.24425/ijet.2023.144356.
  • [6] A. Ghodake and B. Hogade, “Wearable textile antenna for glucose level monitoring,” Int. J. Electron. Telecommun., vol. 69, no. 2, pp. 219-224, 2023, http://doi.org/10.24425/ijet.2023.144353.
  • [7] D. Liu, W. Hong, T. S. Rappaport, C. Luxey, and W. Hong, “What will 5g antennas and propagation be?,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6205-6212, 2017, http://doi.org/10.1109/TAP.2017.2774707.
  • [8] I. Ahmad, W. Tan, Q. Ali, and H. Sun, “Latest performance improvement strategies and techniques used in 5g antenna designing technology, a comprehensive study,” Micromachines, vol. 13, no. 5, p. 717, 2022, http://doi.org/10.3390/mi13050717.
  • [9] J. Shi, X. Geng, S. Yan, K. Xu, and Y. Chen, “An approach to achieving multiple mutual coupling nulls in mimo stacked patch antenna for decoupling bandwidth enhancement,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 12, pp. 4809-4813, 2022, http://doi.org/10.1109/TCSII.2022.3196020.
  • [10] C. Lee, T. Yo, F. Huang, and C. Luo, “Bandwidth enhancement of planar inverted‐f antenna for implantable biotelemetry,” Microw. Opt. Technol. Lett., vol. 51, no. 3, pp. 749-752, 2009, http://doi.org/10.1002/mop.24189.
  • [11] Y. Cui, L. Wu, and R. Li, “Bandwidth enhancement of a broadband dual-polarized antenna for 2g/3g/4g and imt base stations,” IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 7368-7373, 2018, http://doi.org/10.1109/TAP.2018.2867046.
  • [12] K. Da Xu, H. Xu, Y. Liu, J. Li, and Q. H. Liu, “Microstrip patch antennas with multiple parasitic patches and shorting vias for bandwidth enhancement,” IEEE Access, vol. 6, pp. 11624-11633, 2018, http://doi.org/10.1109/ACCESS.2018.2794962.
  • [13] K. Saraswat and A. R. Harish, “Analysis of wideband circularly polarized ring slot antenna using characteristics mode for bandwidth enhancement,” Int. J. RF Microw. Comput. Eng., vol. 28, no. 2, p. e21186, 2018, http://doi.org/10.1002/mmce.21186.
  • [14] T. Ali, M. S. Aw, and R. C. Biradar, “AA compact bandwidth enhanced antenna loaded with srr for wlan/wimax/satellite applications,” Adv. Electromagn., vol. 7, no. 4, pp. 78-84, 2018, http://doi.org/10.7716/aem.v7i4.644.
  • [15] S. Das, A. Gupta, and S. Sahu, “Metamaterial based fractal-ground loaded frequency-reconfigurable monopole-antenna with gain-bandwidth enhancement,” AEU-International J. Electron. Commun., vol. 132, p. 153593, 2021, http://doi.org/10.1016/j.aeue.2020.153593.
  • [16] C. Sun, H. Zheng, L. Zhang, and Y. Liu, “Analysis and design of a novel coupled shorting strip for compact patch antenna with bandwidth enhancement,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 1477-1481, 2014, http://doi.org/10.1109/LAWP.2014.2341596.
  • [17] W. Chen, G. Wang, and C. Zhang, “Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot,” vol. 57, no. 7, pp. 2176-2179, 2009, http://doi.org/10.1109/TAP.2009.2021974.
  • [18] W. X. Liu, Y. Z. Yin, W. L. Xu, and S. L. Zuo, “Compact open-slot antenna with bandwidth enhancement,” IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 850-853, 2011, http://doi.org/10.1109/LAWP.2011.2165197.
  • [19] A. Dastranj, F. Ranjbar, and M. Bornapour, “A new compact circular shape fractal antenna for broadband wireless communication applications,” Prog. Electromagn. Res. C, vol. 93, pp. 19-28, 2019, http://doi.org/10.2528/PIERC19031001.
  • [20] T. Addepalli and V. R. Anitha, “A very compact and closely spaced circular shaped uwb mimo antenna with improved isolation,” AEU-International J. Electron. Commun., vol. 114, p. 153016, 2020, http://doi.org/10.2528/PIERC19031001.
  • [21] D. Gopi, A. R. Vadaboyina, and J. R. K. K. Dabbakuti, “DGS based monopole circular-shaped patch antenna for uwb applications,” SN Appl. Sci., vol. 3, no. 2, p. 198, 2021, http://doi.org/10.1007/s42452-020-04123-w.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5aedbc4b-2148-4638-a56f-a2f61379ea2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.