PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Higher order approximations to coal pyrolysis distribution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coal pyrolysis is a complex process involving a large number of chemical reactions. Pyrolysis is a key step in all coal conversion processes. The Distributed Activation Energy Model (DAEM) is a state-of-the art approach to the problem of predicting the amount of volatile released versus activation energy or time. The distribution of mass released is usually assumed to be Gaussian. We present an inverse iterative approach together with a smoothing function to estimate the underlying distribution directly from volatilisation data.
Rocznik
Strony
76--86
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • School of Computing, Information & Mathematical Sciences, The University of the South Pacific, Suva, Fiji
  • School of Mathematics and Statistics, Victoria University of Wellington, New Zealand
Bibliografia
  • 1. Anthony, D. B., & Howard, J. B. (1976). Coal devolatilization and hydrogastification. AIChE Journal, 22(4), 625-656. https://doi.org/10.1002/aic.690220403.
  • 2. Anthony, D. B., Howard, J. B., Hottel, H. C., & Meissner, H. P. (1975). Rapid devolatilization of pulverized coal. Symposium (International) on Combustion, 15(1), 1303-1317. https://doi.org/10.1016/S0082-0784(75)80392-4.
  • 3. Armstrong, R., & Kulesza, B. L. J. (1981). An approximate solution to the equation x= exp (- x/ε). Bulletin Institute of Mathematics and Its Applications, 17, 56.
  • 4. Badzioch, S., & Hawksley, P. G. W. (1970). Kinetics of thermal decomposition of pulverized coal particles. Industrial and Engineering Chemistry Process Design and Development, 9(4), 521-530. https://doi.org/10.1021/i260036a005.
  • 5. Brown, M. (1988). Introduction to thermal analysis: Techniques and applications. New York: Chapman and Hall.
  • 6. Donskoi, E., & McElwain, D. L. S. (1999). Approximate modelling of coal pyrolysis. Fuel, 78(7), 825-835. https://doi.org/10.1016/S0016-2361(98)00204-X.
  • 7. Gunes, M., & Gunes, S. (1999). The influences of various parameters on the numerical solution of nonisothermal DAEM equation. Thermochimica Acta, 336(1-2), 93-96. https://doi.org/10.1016/S0040-6031(99)00207-5.
  • 8. Howard, J., & Elliott, M. (1981). Chemistry of coal utilization (Vol. 2nd, Supplement) New York: Wiley and Sons.
  • 9. Howard, J., & Essenhigh, R. (1967). Pyrolysis of coal particles in pulverized fuel flames. Industrial and Engineering Chemistry Process Design and Development, 6(1), 74-84. https://doi.org/10.1021/i260021a013.
  • 10. Juntgen, H. (1984). Review of the kinetics of pyrolysis and hydro-pyrolysis in relation to the chemical constitution of coal. Fuel, 63(6), 731-737. https://doi.org/10.1016/0016-2361(84)90058-9.
  • 11. Lakshmanan, C. C., Bennett, M. L., & White, N. (1991). Implications of multiplicity in kinetic parameters to petroleum exploration: Distributed activation energy models. Energy & Fuels, 5(1), 110-117. https://doi.org/10.1021/ef00025a019.
  • 12. Ma, X., Nagaishi, H., Yoshida, T., Xu, G., & Harada, M. (2004). Kinetics of rapid coal devolatilization measured using a spot heater apparatus. Fuel Processing Technology, 85(1), 43-49. https://doi.org/10.1016/S0378-3820(03)00096-1.
  • 13. Maki, T., Takatsuno, A., & Miura, K. (1997). Analysis of pyrolysis reactions of various coals including argonne premium coals using a new distributed activation energy model. Energy & Fuels, 11(5), 972-977. https://doi.org/10.1021/ef960224w.
  • 14. Merrick, D. (1983). Mathematical models of the thermal decomposition of coal: 1. The evolution of volatile matter. Fuel, 62(5), 534-539. https://doi.org/10.1016/0016-2361(83)90222-3.
  • 15. Miura, K. (1995). A new and simple method to estimate f(e) and k0(e) in the distributed activation energy model from three sets of experimental data. Energy & Fuels, 9(2), 302-307. https://doi.org/10.1021/ef00050a014.
  • 16. Miura, K., & Maki, T. (1998). Simplified method to estimate f(e) in distributed activation energy model for analyzing coal pyrolysis reaction. Journal of Chemical Engineering of Japan, 31(2), 228-235.
  • 17. Niksa, S., & Lau, C.-W. (1993). Global rates of devolatilization for various coal types. Combustion and Flame, 94(3), 293-307. https://doi.org/10.1016/0010-2180(93) 90075-E.
  • 18. Pitt, G. (1962). The kinetics of the evolution of volatile products from coal. Fuel, 41(3), 267-274. https://doi.org/10.1021/ef00002a002.
  • 19. Please, C. P., McGuinness, M., & McElwain, D. (2003). Approximations to the distributed activation energy model for the pyrolysis of coal. Combustion and Flame, 133(1), 107-117. https://doi.org/10.1016/S0010-2180(02)00554-0.
  • 20. Richards, A. P., & Fletcher, T. H. (2016 December). Comparison of simple global kinetic models for coal devolatilization with the CPD model. Fuel, 185, 171-180. https://doi.org/10.1016/j.fuel.2016.07.095.
  • 21. Saxena, S. C. (1990). Devolatilization and combustion characteristics of coal particles. Progress in Energy and Combustion Science, 16(1), 55-94. https://doi.org/10.1016/0360-1285(90)90025-X.
  • 22. Seber, G. A. F., & Wild, C. J. (2003). Nonlinear regression. Hoboken, New Jersey: John Wiley &Sons, Inc.
  • 23. Solomon, P. R., & Hamblen, D. G. (1983). Finding order in coal pyrolysis kinetics. Progress in Energy and Combustion Science, 9(4), 323-361. https://doi.org/10.1016/0360-1285(83)90012-6.
  • 24. Solomon, P. R., Hamblen, D. G., & Carangelo, R. M. (1981 November). Coal pyrolysis. Symposium on coal pyrolysis. American Institute of Chemical Engineering.
  • 25. Solomon, P. R., Serio, M. A., & Suuberg, E. M. (1992). Coal pyrolysis: Experiments, kinetic rates and mechanisms. Progress in Energy and Combustion Science, 18(2), 133-220. https://doi.org/10.1016/0360-1285(92)90021-R.
  • 26. Suuberg, E. M. (1983). Approximate solution technique for nonisothermal, Gaussian distributed activation energy models. Combustion and Flame, 50, 243-245. https://doi.org/10.1016/0010-2180(83)90066-4.
  • 27. Teng, H., & Hsieh, C. (1999). Activation energy for oxygen chemisorption on carbon at low temperatures. Industrial & Engineering Chemistry Research, 38(1), 292-297. https://doi.org/10.1021/ie980107j.
  • 28. Urych, B. (2014). Determination of kinetic parameters of coal pyrolysis to simulate the process of underground gasification (UCG). Journal of Sustainable Mining, 13(1), 3-9. https://doi.org/10.7424/jsm140102.
  • 29. Vand, V. (1943). A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proceedings of the Physical Society, 55(3), 222.
  • 30. Wang, J., Wenhao, L., Peng, L., Zhonglin, Z., Jingxuan, Y., Xiaogang, H., ... Guoqing, G. (2017 November). Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: Reaction behavior and heat transfer. Fuel, 207, 125-135. https://doi. org/10.1016/j.fuel.2017.06.078.
  • 31. White, J. E., Catallo, J., & Legendre, B. L. (2011). Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1), 1-33. https://doi.org/10.1016/j.jaap.2011.01. 004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5aeb50bd-dbd9-4715-8729-87854daf81b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.