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A B S T R A C T

Coal pyrolysis is a complex process involving a large number of chemical reactions. Pyrolysis is a key step in all
coal conversion processes. The Distributed Activation Energy Model (DAEM) is a state-of-the art approach to the
problem of predicting the amount of volatile released versus activation energy or time. The distribution of mass
released is usually assumed to be Gaussian. We present an inverse iterative approach together with a smoothing
function to estimate the underlying distribution directly from volatilisation data.

1. Introduction

Coal pyrolysis has been the subject of numerous studies on kinetics
and the amounts of total volatile yield. Some of these studies have
addressed the individual volatile species and measured the kinetics of
species evolution. Describing the mathematical model of coal pyrolysis
is often an important part of understanding industrial processes.
Modelling coal pyrolysis is important not only for improvement of
combustion or gasification processes but also for processes where coal is
a part of the chemical system. Establishing a model for coal pyrolysis is
also relevant to the process of thermal decomposition such as devola-
tilization.

Important mathematical models of coal pyrolysis that have been
proposed (Howard & Elliott, 1981; Solomon, Hamblen, & Carangelo,
1981) include the Single First Order Reaction model (SFOR) and the
Distributed Activation Energy Model (DAEM). Subsequent researchers
(Miura & Maki, 1998; Niksa & Lau, 1993; Please, McGuinness, &
McElwain, 2003; Suuberg, 1983) have discussed simplifications of these
models. Niksa and Lau (1993) global claimed that holding the SFOR
base-rate constant is the better way to estimate nominal rates for any
given thermal history. The same devolatilization rate will be predicted
as in the DAEM at every instant in the thermal history. By using this
approach to explore the relationship between the DAEM and the SFOR
model, the activation energy is fixed. Niksa and Lau introduced an ef-
fective or nominal rate constant k which varies with time. They also
derived analytical approximations to the DAEM for testing linear or
exponential temperature ramping. The resulting rapidly varying double

exponential (DExp) function is approximated by a piece-wise linear
function with three regions. That is, DExp is zero or unity, and the
region in between is where it rises linearly from zero to one. This
procedure can make the evaluation of the integral much easier where
the initial distribution is Gaussian. Therefore it provides an accurate
approximation of the full DAEM for all parameters of interest. Para-
meters which influence the pyrolysis process vary at different stages of
the process and depending on the reactor space (Urych, 2014).

Niksa and Lau indicated that this approximate procedure (piece-
wise linear function) provides a more accurate approximation to the full
DAEM for all parameters (Niksa & Lau, 1993). This is a refinement of
earlier ideas which used a simple step-function approximation to the
double exponential term (Howard & Elliott, 1981; Pitt, 1962; Suuberg,
1983; Vand, 1943). This term jumps from zero to one at an energy
which varies with time. The use of a Gaussian initial distribution with
the step-function gives an error function approximation to the DAEM.
This error function will be used later in this study as a foundation
function for the development of the inverse problem in the wide dis-
tribution case. Niksa and Lau note that some shortcomings remain in
using their approximation at lower temperatures (Niksa & Lau, 1993),
particularly with the numerical solution of the equations for the posi-
tion of the piecewise linear approximation.

A number of researchers have considered the inverse problem and
have estimated both f E( ) and k0 from three sets of experiments per-
formed at different heating profiles without assuming any functional
forms for f E( ) and k0 (Maki, Takatsuno, & Miura, 1997; Miura, 1995;
Miura & Maki, 1998). Here, f E( ) represents the distribution of
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activation energies and k0 is the pre-exponential or frequency factor in
sec-1. A procedure is given (Miura & Maki, 1998) with four steps to
estimate f E( ) and k0. For a linearly-ramping temperature, the double
exponential term is approximated by a step function because it changes
rapidly with E at a given temperature. Miura and Maki (1998) simpli-
fied found the rate of change of volatility with time is proportional to
the distribution of volatiles (f). They used this relationship to obtain f
from the experimental measurements. Please et al. (2003) approxima-
tions present a more accurate approximation to the double exponential,
which is used in the two cases of narrow and wide distribution. A
careful analysis in these two regimes is given based upon asymptotic
expansions, leading to systematic methods for rapidly finding accurate
approximations.

In this study we review the Simple First Order Reaction Model
(SFOR) and Distributed Activation Energy Model (DAEM) in order to
understand why the DAEM is a more accurate and appropriate ap-
proach to modelling coal pyrolysis. Then we consider how to solve the
inverse problem of finding the distribution used by the DAEM. In this
case the relative width of the initial distribution is much wider than the
width of the double exponential term. Finally we focus on a method to
reduce the errors due to the differencing required in the inverse pro-
blem, by first fitting an appropriate smooth function to the data. The
appropriate smooth function allows the calculation of higher-order
terms, and gives a better fit to data, providing a more accurate estimate
of the underlying distribution in the DAEM.

2. Mathematical models of coal pyrolysis

2.1. Existing models

The development in this study follows the approaches of Howard
and Elliott (1981) chemistry and Solomon and Hamblen (1983) finding.
The amount and composition of the thermal decomposition products
depends on the physico-chemical properties of coal and on process
parameters. As the process of thermal decomposition of coal evolves, i
denotes one particular reaction and coal's constituents are numbered
i= n1.... . The thermal decomposition of coal is assumed to comprise
large numbers of independent chemical reactions. Large fragments of
the coal molecule are present due to depolymerization and the rupture
of various bonds within the coal molecule. The strength of chemical
bonds depends on the coal type and rank, related to the occurrence of
different reactions at various temperature intervals. Vi denotes the re-
leased mass fraction of volatiles corresponding to the ith constituent,
and Vi

* is the initial mass of constituent i in the coal. The rate of pyr-
olysis of the ith constituent is given by the first-order reaction equation

= −V
t

k V Vd
d

( )i
i i i

*
(1)

The proportionality constant ki is the rate coefficient that is typi-
cally taken to depend on temperature by an equation which is
Arrhenius in form,

⎜ ⎟= ⎛
⎝

− ⎞
⎠

k k E
RT t

exp
( )i i

i
0

(2)

where k i0 is the pre-exponential or frequency factor in sec-1, Ei is the
apparent activation energy for constituent i in J/mol, R is the ideal gas
constant in (J/mol/K) and T t( ) is the absolute temperature of the coal
particle in kelvins. Values of k i0 , Ei, andVi

* are estimated from matching
with experimental data. Anthony and Howard (1976) summarized a
collection of experimental rate constant (ki) values, and the associated
rate parameters and coal properties.

The solution to Equation (1) may be written in terms of the mass of
volatiles remaining to be released at time t as

∫⎜ ⎟
−

= ⎛
⎝

− ⎞
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i

t
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*

* 0 (3)

Then the mass of the volatiles released for reaction i is

∫= − −( )V V V k u uexp ( )di i i
t

i
* *

0 (4)

This development has been further refined for the SFOR and DAEM
models which are briefly described in the following.

2.2. Single first order reaction model (SFOR)

The simplest method for the description of the kinetics of the pyr-
olysis reactions is to use a first order reaction for overall weight loss of
the volatile and for individual species evolution. The development of
the mathematical models above shows that if i=1 then the model is
referred to as the Single First Order Reaction Model (SFOR). Thus, the
rate of pyrolysis is expressed as:

= −V
t

k V Vd
d

( )*
(5)

where the rate constant k is given by:

= ⎛
⎝

− ⎞
⎠

k k E
RT

exp0 (6)

Many authors have approximated the overall process of the complex
decomposition and transport phenomena involved in coal pyrolysis.
They assumed that decomposition occurs evenly throughout the volume
of the particles as a first order reaction, and that its course is de-
termined by the chemical structure of coal (Juntgen, 1984).

Howard and Essenhigh (1967) assumed that pyrolysis is a first order
reaction with respect to the amount of undecomposed volatile matter.
They use a constant rate of the Arrhenius type. Other researchers have
also shown that the thermal decomposition of coal occurs via first order
reactions (Badzioch & Hawksley, 1970; Pitt, 1962). The SFOR model is
an approach based on holding the activation energy fixed and defining
k in Equation (6) as the rate constant which varies with time, → ∞t .

2.3. Distributed activation energy model (DAEM)

The DAEM is a multi-reaction model widely used to describe the
thermal decomposition processes of coal pyrolysis (Pitt, 1962). The
evolution of pyrolysis is assumed to involve an infinite number of in-
dependent chemical reactions with a continuous distribution of re-
actants. That is, many irreversible first-order parallel reactions with
different rate parameters are taken to occur simultaneously. In the
DAEM model, the dependence on i is replaced by a continuous depen-
dence on activation energy E so the values of k i0 , Ei and Vi

* are not
known apriori and the distribution of activation energies must be es-
timated from the experimental data.

The DAEM has been used successfully to represent the change in
overall conversion and the change in the yield of a given component
during the coal pyrolysis. The increase in the number of calculations
required to solve the DAEM can be an issue. The model is simplified by
assuming that the ki’s differ only in activation energy so a common
assumption is then to take all the pre-exponential factors, k i0 , to have
the same value k0 for all constituents i.

Then the number of reactions is large enough to permit the dis-
tribution of energy to be expressed as a distribution function f E( ),
where f E( ) is the distribution of activation energies, representing the
differences in the activation energies of many first-order irreversible
reactions. Then f E E( )d represents the fraction of the potential volatile
loss V * that has an activation energy between E and +E Ed . Thus, the
incremental amount of volatile material available for release from the
coal can be written as:

=V V f E Ed ( )d* * (7)

with the distribution function f E( ) normalized to satisfy
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∫ =
∞

f E E( )d 1
0 (8)

The solution given by eqn (3) is multiplied by f E( ) and integrated
with respect to energy to give the DAEM solution

∫ ∫⎜ ⎟
− = ⎛

⎝
− ⎞

⎠

∞ −V V
V

k E u f E Eexp ( )e d ( )d
t E RT u

*

* 0 0 0
/( ( ))

(9)

The DAEM solution is typically used in two ways. The first is to
assume the initial distributions for volatiles f E( ) and the pre-ex-
ponential factors k E( )0 and then find the resulting time-dependence of
the volatiles. The second is the inverse problem, where the rate of vo-
latilisation V td /d is measured from data, and the distributions must be
determined. This second problem is one of estimating parameters, and
there are significant difficulties in determining accurately both f E( )
and k E( )0 as they are highly correlated. A common assumption is then
to take all the pre-exponential, or frequency factors, k E( )0 to have the
same value k0 independent of energy. This simplifies much of the later
analysis and may be reasonable given the uncertainty over the reactant
distributions. Formally the inverse problem then becomes one of sol-
ving a Volterra integral equation of the first type for the function f E( ).
Such problems are invariably ill-posed and it is necessary to regularise
the problem, with conditions such as f E( ) being as smooth as possible
or being of a particular form, in order for solutions to be properly de-
fined.

2.4. Comparison of the two models

The SFOR model is often used with the values of V *, E and k0 de-
termined experimentally (Anthony & Howard, 1976; Howard & Elliott,
1981; Saxena, 1990). The coal is heated so that temperature increases
at a constant rate = mT

t
d
d where >m 0. Then equations (5) and (6) with

this uniform heating rate are integrated to give

∫ ∫−
= ⎛

⎝
− ⎞

⎠
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m

E
RT

Td exp d
V T

0 * 0
0

(10)

Since ≫E RT/ 1 is a good approximation for pyrolysis reactions, the
solution to Equation (10) can be approximated as

⎜ ⎟
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(11)

The distribution curve f E( ) is generally assumed to be a Gaussian
distribution in the DAEM and Equation (9). Within this distribution, the
mean activation energy E0 and standard deviation σ are both de-
termined by experimental data. Thus

⎜ ⎟= ⎛
⎝

− − ⎞
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σ π

E E
σ

( ) 1
2
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2

0
2

2 (12)

Equations (9) and (12) provide the solution for the DAEM model as
follows:

∫ ∫− = ⎡
⎣⎢

− ⎛
⎝

− ⎞
⎠

− − ⎤
⎦⎥

∞V V
V σ π

k E
RT

t
E E

σ
E1

2
exp exp d ( )

2
d

t*

* 0 0 0
0

2

2 (13)

Equation (13) can be fitted to coal decomposition data using four
parameters (V *, E0, σ, k0) and is applicable to a non-isothermal process
(Anthony, Howard, Hottel, & Meissner, 1975) where the distribution is
Gaussian.

Comparing the two models, three parameters, k0, E0, and σ are re-
quired in addition to V * for the DAEM model. However for the SFOR
model, only two parameters, frequency factor and activation energy are
required for analysis. The DAEM is a more detailed model, that is more
faithful to the physics and chemistry of thermal decomposition pro-
cesses with different heating rates (Howard & Elliott, 1981; Solomon,
Serio, & Suuberg, 1992). The main drawback of the DAEM model is the
computational time required to evaluate the integral, prompting a
number of studies of approximations to it.

The relationship between the DAEM and the SFOR models has been
explored (Niksa & Lau, 1993) in an approach based on holding the
activation energy fixed and defining an effective or nominal rate con-
stant k , which varies with time as

= −V
t

k V Vd
d

( )*
(14)

The nominal rates for any given thermal history can be estimated
from the SFOR-based rate constant that predicts the same devolatili-
zation rate as the DAEM at every instant in the thermal history. There is
a large variation in k with time or temperature, and a more modest
variation with coal rank. Analytical approximations to the DAEM may
be derived (Niksa & Lau, 1993) for temperatures undergoing linear or
exponential ramping, by exploiting the rapid changes occurring in the
double exponential (DExp). In Equation (9), the integrand consists of
the product of the double exponential term

∫⎜ ⎟≡ ⎛
⎝

− ⎞
⎠

−k E uDExp exp ( )e d
t E RT u

0 0
/( ( ))

and a term representing the distribution of activation energy f E( ). If
≫E RT/ 1, and the temperature ramps as T= mt , then the following

solution may be obtained (Niksa & Lau, 1993).

∫ ∼ ⎛
⎝

− ⎞
⎠

−k E u k RT
mE

E
RT

( )e d exp
t E RT u

0 0
/( ( )) 0

2

(15)

Gunes and Gunes (1999) discussed the influences of various parameters
on the numerical solution of the nonisothermal DAEM Equation (13),
while Brown (1988) undertook a detailed review of the effect of various
parameters on the SFOR model. In the SFOR model, Howard and Elliott
(1981) chemistry plotted Equation (11) using various activation en-
ergies and investigating the effects of parameter changes. The com-
parison here is focused mainly on the influence of these parameters:
heating rate (m), activation energy (E) and the pre-exponential factor
(k0). More recently, the capabilities of several simple devolatilization
models have been compared (Richards & Fletcher, 2016) for a range of
particle heating rates that might be encountered in a pulverized coal-
fired boiler. It was found that the DAEM has a wide application range
and can easily be coupled with a reactor simulation. The DAEM has also
been used in a study of the simulation of pyrolysis in Inner Mongolia
Xinghe coal particles (Wang et al., 2017). The pyrolysis characteristics
of this coal were investigated by non-isothermal thermo-gravimetric
analysis while the reaction kinetic parameters were obtained by using
the DAEM.

We examined the influence of each parameter on the numerical
solution of both models, which show similar behaviour. The first
parameter is the influence of heating rate (m) on both models. The
DAEM and SFOR models give remaining mass fraction curves that are
shifted up the temperature scale by an increase in the heating rate. The
second parameter is the influence of mean activation energy (E0). When
E0 values are increased the curves shift towards the right. By comparing
the curves of both models to Howard's data for the total yield of vola-
tiles (Howard & Elliott, 1981), it is apparent that the DAEM curve gives
a more realistic result. The third parameter is the pre-exponential factor
(k0). The DAEM and the SFOR models show that an increase in k0 value
causes the curves to shift toward the left. The effect of an increase in
any of the three parameters is to cause the curves to shift up the tem-
perature scale.

A model such as the Single First-Order Reaction model (SFOR) is
strictly applicable only to homogeneous systems in which decomposi-
tion from the source V * is due to a single chemical process which occurs
with a single activation energy E. Solomon et al. (1992) coal have
shown that for the devolatilization of coal, the values of k0 and E de-
termined for one heating rate are not appropriate when used for an-
other heating rate. Some other simple models were used also and, like
the single first order model, they were applicable only under limited
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experimental conditions (Howard & Elliott, 1981). Howard and Elliott
plotted Equation (9) using reasonable parameters in fitting the data to
the total yield of volatile. The resulting graph showed some in-
adequacies in the single reaction model. In an attempt to improve the
SFOR model, they specified that the activation energy and pre-ex-
ponential factor must be very low to approximately fit the temperature
dependence that results from the occurrence of different reactions at
different temperature intervals. However, they still concluded that the
SFOR model was inadequate for dealing with the complexities of coal
pyrolysis.

When modelling industrial processes where large particles or lumps
of coal are involved, heat transfer cannot be neglected and the change
of temperature cannot be described with one uniform heating rate. In
general, the change of temperature in solids is modelled by the trans-
port partial differential equation, which may be nonlinear. In other
words more complicated reactions like coal pyrolysis cannot be ade-
quately modelled by a single reaction, due to large variations in the
value of k0 and E0 with the heating rate (Solomon et al., 1992). Re-
searchers have realised that the SFOR model could only be applied to
limited experimental conditions and that they needed a model which
could be applied to more complex experimental conditions of coal
pyrolysis. They then moved to more complicated models like the DAEM
model, which is adapted from Vand's treatment of independent parallel
processes in modelling the resistance of metallic films (Vand, 1943).
DAEM has proved very successful in describing the pyrolysis of various
coal types under differing temperature histories.

The DAEM can be used to model thermal decomposition processes
during the pyrolysis of coal and other materials, including biomass
(White, Catallo, & Legendre, 2011), residual oils, resin chars (Teng &
Hsieh, 1999) and kerogen (Lakshmanan, Bennett, & White, 1991).
White et al. (2011) presented a critical review of different pyrolysis
methods including the DAEM. The DAEM has been described as ap-
plicable over a wide range of thermal conditions (Anthony et al., 1975;
Howard & Elliott, 1981). It was originally developed to predict volatile
yields during rapid pyrolysis of coal but has also been applied at the
relatively low heating rates encountered during thermal decomposition
of coal to coke (Merrick, 1983). The DAEM is the simplest model that
gives devolatilization rates during transient heating over a broad range
of heating rates. It is also the only formalism in devolatilization mod-
elling that captures the observed density of reaction time scales for this
process.

The two models have their shortcomings for application to the
pyrolysis of coal. According to Howard and Elliott (1981), the most
serious problem of Equations (5) and (6) in the SFOR model is the
apparently asymptotic yield of volatiles that is observed after some time
at the final temperature. As a result, the apparent value of V * as a
function of final temperature is mechanistically inconsistent with the
equations and is mathematically unamenable. Howard also plotted
Arrhenius plots for rate constants from the work of different researchers
and labelled the different graphs using time zones in some of the cor-
relations. The relatively slow rate of weight loss observed after ex-
tended times at a given temperature requires a set of parameter values
that differ markedly from those that fit the behavior of the graph over
short time. Howard and Elliott (1981) clearly stated that coal pyrolysis
is not a single reaction, but rather a multiplicity of overlapping de-
compositions concentrated in different time intervals for isothermal
pyrolysis, or in different time and temperature intervals for the usual
case of pyrolysis during heatup. He concluded that any one set of
parameter values for these equations cannot be expected to represent
data accurately over a wide range of conditions. The SFOR model could
only be applied in limited conditions and in this way was problematic.

The problems were then solved by applying the DAEM model to
these limited conditions. However, the main difficulty with the DAEM
solution is a complicated double integral which can require significant
computing resources, particularly when it needs evaluating many times
(Donskoi & McElwain, 1999). Miura (1995) also discussed in his work

that the DAEM model has two major weak points. The first is the as-
sumption of a constant k0 value for all reactions. The other is the as-
signment of the Gaussian distribution to f E( ). It is possible to estimate
f E( ) from experimental data without assuming the Gaussian distribu-
tion as performed by Vand (1943). However, in order to use the
Gaussian distribution, a constant value must be assigned to k0 before-
hand in order to estimate f E( ). Miura (1995) presented a simple
method to overcome this problem. The simple method was applied to
estimate f E( ) and k E( )0 from three sets of experimental data without
any assumption on the functional form of f E( ) or k0 for the pyrolysis of
three kinds of coal. Miura and Maki (1998) also presented a simple
method to estimate the f E( ) of coal pyrolysis reaction from a single
weight-loss curve measured at a constant heating rate. This largely
simplifies the procedure to analyze reaction of coal without losing the
merit of the former method (Miura, 1995).

We conclude that the DAEM has been described as a more powerful
model for evaluating the complex experimental conditions of coal
pyrolysis. The shortcomings of the SFOR model can be solved by the use
of the DAEM. Although we said the SFOR model could only be applied
in limited conditions but this is a simple model and it works only for
very particular situation. Therefore the DAEM is generally recognized
to be the most appropriate approach to model coal pyrolysis.

3. Mathematical formulation

In Equation (9) for the DAEM, the integrand consists of the product
of two major parts. First, the double exponential (DExp) term is de-
termined by the temperature during the experiment and depends on
time through the temperature history experienced by the sample. The
other term representing the initial distribution f E( ) is determined by
the type of coal being considered and it is independent of time, and
depends on the distribution of volatiles in the sample. So Equation (9)
can be re-written as

∫=
∞

v f E E(DExp)( ( ))d
0 (16)

where v= − V V1 ( / )* is the fraction of the volatile yield not yet re-
leased. Another way of writing the double integral in Equations (9) and
(16) is in the form

∫ ∫⎜ ⎟= ⎛
⎝

− + ⎞
⎠

∞ −v k E u f E Eexp ( )e d ln( ( )) d
t E RT u

0 0 0
/( ( ))

The effect of constant temperature T u( ) =T0 on DExp is discussed
first. It is followed by an investigation of ramping temperature histories.

3.1. Double exponential integrand simplification for DAEM

Please et al. (2003) approximations developed simple approxima-
tions to solutions to the DAEM. Their approach was similar to that of
Niksa and Lau (1993) but uses more systematic methods and a more
accurate approximation. The approach taken here is similar to that of
Niksa and Lau (1993) and Please et al. (2003) approximations but we
here also present higher-order terms. The more higher-order terms we
provide, the better the underlying distribution in the DAEM is ap-
proximated. The double exponential term is

∫⎜ ⎟≡ ⎛
⎝

− ⎞
⎠

−k uDExp exp e d
t E RT u

0 0
/( ( ))

(17)

The integral in DExp is particularly simple when temperature is
constant, T u( ) = T0. Then equation (17) gives

≡ − −tkDExp exp( e )E RT
0

/ 0 (18)

We seek to systematically simplify the integrand in the DAEM so-
lution for a typical range of values of the terms on which it depends.
The frequency factors are typically in the range of ≤ ≤ −k10 10 s10

0
13 1,
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whereas the activation energies fall into the region of
− −100 300 kJ mol 1. The temperature history depends on the particular

experiments but − ∘100 600 C is mainly used in pyrolysis. However, we
can also apply this DAEM model to combustion problems where the
temperature range may be significantly than this. When both of the
parameters ∼E RT/ 100 and ∼tk 100

10 from Equation (18) are large, the
DExp function changes rather steeply with E. In order to describe the
stepwise function simplification of Gaussian distribution, the case of
ramping temperature with T= mt is used in Equation (17) gives

∫≡ − −( )k uDExp exp e d
t E Rmu

0 0
/

(19)

In Equation (19), the integral inside the exponential function can be
approximated using the conventional Laplace transform approach. The
parameter E Rmt/( ) is assumed to be large. Evaluating the integral of the
DExp function produces the following well known asymptotic solution,

∫⎜ ⎟ ⎜ ⎟
⎛
⎝

− ⎞
⎠

∼ ⎛
⎝

− ⎞
⎠

→ ∞− −k u k Rmt
E

E
Rmt

exp e d exp e ,
t E Rmu E Rmt

0 0
/ 0

2
/

(20)

Equations (20) and (15) have the same form as Equation (11) when
T= mt . These equations are exactly the same as the equation resulting
from the p-function presented by Miura (1995). Equation (20) can be
rewritten as:

⎜ ⎟⎜ ⎟
⎛
⎝

− ⎛
⎝

− ⎞
⎠

⎞
⎠

E E
E

exp exp s

w

and as noted above, when E is increased over a range of size Ew around ,
the function changes rapidly from zero to one. To obtain the desired
form, we let

= −g E E E
E

( ) s

w

and we set

⎜ ⎟⎛
⎝

− ⎞
⎠

= −−k Rmt
E

g Eexp e exp( exp( ( )))E Rmt0
2

/

which implies that

⎜ ⎟= − + ⎛
⎝

⎞
⎠

g E E
Rmt

k Rmt
E

( ) ln 0
2

Since only the behavior near is of interest, this function is expanded
in a Taylor series as follows in order to allow the terms and Ew to be
identified:

∼ + − ′ + − ′′ + − ′′′

+ …

g E g E E E g E E E g E E E g E( ) ( ) ( ) ( ) ( ) ( )/2 ( ) ( )/6s s s s s s s
2 3

(21)

Comparing Equation (21) and the definition of g E( ) gives the values
of =g E( ) 0s and ′ = −g E E( ) 1/s w, hence:

⎜ ⎟≡ − + ⎛
⎝

⎞
⎠

=g E E
Rmt

k Rmt
E

( ) ln 0s
s

s

0
2

(22)

and

′ ≡ − − = −g E
Rmt E E

( ) 1 1 1
s

s w (23)

Solving and simplifying Equations (22) and (23) gives the solutions
=E Rmt Y k t( )s 0 and = +Ew

Rmt E
Rmt E

s
s
where Y x( ) is the LambertW function

considered to be the one real root of the equation

=Ye xY (24)

Writing Equation (22) in the form of Equation (24) produces

=E
Rmt

k tes E Rmt/( )
0s

The LambertW function Y x( ) is used often in this study in order to

develop the formula of the inverse problem. So it is useful to understand
approximations to Y x( ) for small and large x corresponding to short and
long time periods (Armstrong & Kulesza, 1981).

− ≪Y x x x~ , 12

and

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≫
( )

Y x x~ln
ln

, 1
x
xln

In Equation (9), the total integrand is the product of the double
exponential function (DExp) and initial distribution ( f E( )). The DExp
has been described as a smooth step-function which changes rapidly
from zero to one. This rapid change is due to the large size of tk0 in a
range of activation energies of width Ew around the value E= , with
and Ew varying with time. The f E( ) is presumed to be a Gaussian
distribution with σ as the standard deviation of the distribution and E0
as the mean activation energy. Both parameters are treated as constant
values. There are two different limits to evaluate the Gaussian dis-
tribution: wide initial distribution and narrow initial distribution.

This study focuses on the wide distribution case, where the initial
distribution f E( ) is wider than the width Ew. As time progresses, DExp
moves across the distribution, bringing the integrand from zero times
the distribution, to one times the distribution. Thus the initial dis-
tribution is progressively chopped off from the left by step-like function.
The location of the maximum of the total integrand can move sig-
nificantly, and the shape becomes quite skewed. This behaviour of the
integrand is known to originate in the nature of DExp when it is ap-
proximated by a step-function (Howard & Elliott, 1981; Pitt, 1962;
Suuberg, 1983; Vand, 1943).

For presentation purposes, the initial distribution f E( ( )) is now
taken to be a Gaussian distribution with mean activation energy E0 and
standard deviation σ. Approximation is sought to the integral

∫=
∞

v
σ π

h E E1
2

exp( ( ))d
0

where = −v V V1 ( / )* is the fraction of the volatile yield not yet re-
leased,

⎜ ⎟= − ⎛
⎝

− ⎞
⎠

− −
h E E E

E
E E

σ
( ) exp ( )

2
s

w

0
2

2

and and Ew are functions of time as stated earlier. The energy is re-
scaled as =y E E/ 0, so the problem becomes

∫=
∞

v α
π

h y yexp( ( ))d
0 (25)

where

⎜ ⎟= − ⎛
⎝

− ⎞
⎠

− −h y
y y

y
α y( ) exp ( 1)s

w

2

(26)

where =ys
E
E

s
0
, =yw

E
E

w
0
, and α= ( )E

σ
1
2

20 . Note that in practice ≫α 1.
Consider our two special cases of temperature history in terms of the
rescaled parameters y and τ= k t0 :

1. For a constant temperature where =T T0,

= =y RT
E

τ y RT
E

ln ,s w
0

0

0

0

2. For a linear ramping temperature where =T mt ,

= =
+

y Rmτ
k E

Y τ y
y
Y τ

( ),
1 ( )s w

s

0 0

These equations are used to approximate v, in the case of a linear
ramping temperature, in the next section, when the initial distribution
is much wider than DExp.
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4. The wide distribution case

The following sections concentrate on the case where the initial
distribution f E( ( )) is much wider than the double exponential (DExp).
As discussed above, the DExp is approximated as a smoothed step-
function. It rises rapidly from zero to one in a range of activation en-
ergies of width Ew around the value E= , where and Ew vary with time.
We consider the limit ≪y α 1w . The step-function U is defined to be

− = ⎧
⎨⎩

<
≥

U y y
y y
y y

( )
0 , if
1 , ifs

s

s

Equation (25) can be written in the form

∫

∫

⎜ ⎟⎜ ⎟= ⎡

⎣
⎢

⎛

⎝
− ⎛

⎝

− ⎞
⎠

⎞

⎠
− − ⎤

⎦
⎥ − −

+ − −

∞

∞

v α
π

y y
y

U y y α y y

α
π

α y y

exp exp ( ) exp( ( 1) )d

exp( ( 1) )d

s

w
s

y

0
2

2
s (27)

The first integrand in Equation (27) is the product of the initial
distribution and a function which is very small everywhere except in a
neighbourhood of size yw around the point =y ys. Hence the initial
distribution term is expanded in a Taylor series about =y ys,

∫

∫ ⎜ ⎟

⎡
⎣

⎛
⎝

− ⎞
⎠

− − ⎤
⎦

− − =

⎡

⎣
⎢ ⎛

⎝
− ⎞

⎠
− ⎛

⎝
− ⎞

⎠

⎤

⎦
⎥

⎛

⎝
⎜ − ⎛

⎝
⎜ − ⎞

⎠
⎟

− + …

∞ −

∞ −

( )
( )

U y y α y dy

U y y y y

α y

exp exp ( ) exp( ( 1) )

exp exp 1

2 ( 1) )

α
π

y y
y s

α
π

y y
y s s

s

0
2

0

s

w

s

w

(28)

The right hand side of Equation (28) can then be approximated as

∫ − − − − + …− −
−∞

∞ − −[ ]α
π

y e e U x y y α y x( ) (1 ( )2 ( 1) )d ,w
α y e

s s
( 1)s

x2

so that

∫ ⎡
⎣

⎛
⎝

− ⎞
⎠

− − ⎤
⎦

− − =

− − + − −

+ − + − + + …

∞ −

− −

( ) U y y α y y

y b αy y b αy α y b

y α y α y b

exp exp ( ) exp( ( 1) )d

e [ 2 ( 1) {2 ( 1) 1}

{2( 1) 2 ( 1) 1} ]

α
π

y y
y s

α
π w

α y
w s w s

w s s

0
2

( 1)
0 1

2 2
2

2
3

3 2 3
3

s

w

s
2

where

∫≡ − = …
−∞

∞ − −( )b x e U x x i( ) d 0,1,2,i
i e x

remain to be evaluated. The values of bi need to be calculated only once,
as they are independent of any parameters.

≈ − ≈ − ≈ − ≈ −b b b b0.5772, 0.98906, 1.81496, 5.89037.0 1 2 3

Most of the previous simplifications of the step-function approx-
imations used only the conventional error function as a dominant
function and ignored the first integral. The case of a Gaussian initial
distribution in the step-function gives an error function approximation
to the DAEM as illustrated in the second integral of Equation (27). Then
noting that

∫ − − = −
∞α

π
α y y α yexp( ( 1) )d 1

2
erfc( ( 1))

y s
2

s

where erfc is the complementary error function

∫− =
−

∞ −α y
π

uerfc( ( 1)) 1 e ds α y
u

( 1)s

2

combining these results gives an approximation to the solution of
Equation (27).

∼ − + + − +

− − + − + − +

− −v α y y e b αy y b αy

α y b y α y α y b

erfc( ( 1)) [ 2 ( 1)

{2 ( 1) 1} {2( 1) 2 ( 1) 1} ]

s
α
π w

α y
w s w

s w s s

1
2

( 1)
0 1

2

2
2

2
3

3 2 3
3

s
2

(29)

This expansion is only valid when − ≪αy y( 1) 1w s and in the limit
→y α 0w , which apply when the initial distribution f E( ) is much

wider than the width yw of DExp. Then each successive term on the
right-hand side of Equation. (29) is smaller than the previous term. This
asymptotic approach, illustrated above for the case that the distribution
of volatiles is Gaussian in the energy, generalises to gives the following
result for a general underlying distribution f E( ) that is not necessarily
Gaussian:

∫∼ + + ′ + ′′ +

′′′ + +

∞v f y dy y b f y y b f y y b f y

y b f y y b f y y b f y

( ) ( ) ( ) ( )/2

( )/6 ( )/24 ( )/120
ys w s w s w s

w s w
iv

s w
v

s

0
2

1
3

2

4
3

5
4

6
5 (30)

where, as usual, the symbol ' is used to indicate the derivative. Equation
(30) is now used to solve the inverse problem of finding the distribution
f given data for v, in the case of a relatively wide distribution.

4.1. Inverse problem

The rate of volatilization from the general result in Equation (30) is
rewritten in non-dimensional form that gives a procedure for con-
sidering the inverse problem with greater accuracy than previous
considered (these neglected all terms with b b b, , etc.)0 1 2 .

∼ − + ′ + ′′ + ′′′ +

+ + ′ + ′′ +

′′′ +

f y y b f y y b f y y b f y

y b f y b f y b y f y y b f y

y b f y y b f y

[ ( ) ( ) ( ) ( )

( )] [ ( ) 2 ( ) ( )

( ) ( )] .

v
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w
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y
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d
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2
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2
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3
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5
24

4
4

d
d

s

w
(31)

Since in this case E0 is not known beforehand, it is convenient to
write Equation (31) in dimensional form:

∼ − + + + ′ +

+ ′′ + +

′′′ + +

( ) ( )
( ) ( )

( )

b f E b E b E f E

b E b E f E b E b E

f E b E s b E f E

( ) 2 ( )

( )

( ) ( ).
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E
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E
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E
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E
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E
t w

E
t s w

E
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E
t
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E
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E
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d
d

d
d 0

d
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d
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d
d

1
2 d

d
3
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2 d
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1
2 2

3 d
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2
3 3

3 d
d

1
6 3

4 d
d

5
24 4

4 d
d

s w s w

s w s w

s w
(32)

Note that f E( )s is to be determined whereas and Ew are known
functions depending on t (provided that k0 is known). Niksa and Lau
(1993) discussed replacing the dependence on t with dependence on ,
by inverting E t( )s .

Our approach is to expand f as a power series in ε, + + …f f εf~ 0 1 , in
the previous equation. We leverage the relative narrowness of DExp
(and define ε) by putting =E εew w, where ≪ε 1 and ew is of order one.
The rate of volatilisation then becomes

∼ − − − − − …+ +

+ + …+ ′ + ′ + ′

+ …+ ′ + ′ + …+ ′′

+ ′′ + …+ ′′ + …+ ′′′ + …
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2
1 0

3
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1 0
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2 0
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(33)

The boundary conditions when →E 0s or ∞ are satisfied by the
zeroth-order solution and regular series expansion techniques provide a
way to approximate f - coefficients of powers of ε in Equation (33) are
equated to obtain a series of equations for the terms in the expansion of
f. The first result is the leading-order term

= −f v t
E t

d /d
d /ds

0 (34)
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which provides an estimate of the underlying distribution. The result
obtained by adding to the leading-order term f0, the higher-order cor-
rection term

=
⎛

⎝
⎜ +

⎞

⎠
⎟εf A E

f
E

fd
dw

s

E
t
E
t

1 0
0

d
d 0
d
d

w

s
(35)

which is non Gaussian, does provide a more accurate estimate of the
underlying distribution in the DAEM than the leading-order itself. We
further improved approximation by calculating the higher-order terms
ε f2

2 and ε f3
3 shown below:

=
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(37)

Each improvement requires higher-order derivatives (differences) to
be calculated, and without some form of prior smoothing (data fitting)
this leads to data errors that become too large.

5. Data fitting

In this section we indicate an improved method for solving the in-
verse problem, that avoids the numerical errors that arise from re-
peatedly differencing volatilisation data as in the previous section. The
key idea is to firstly use an iterative method to fit the leading order
error function solution based on a Gaussian distribution to data. Then
this leading order approximation can be regarded as a particularly
appropriate smoothing function for the data, that can be used to pro-
vide derivatives that are less prone to numerical error due to truncation
or measurement error. Note that although we start with a first ap-
proximation based on a Gaussian distribution, we do not require the
underlying distribution to remain Gaussian further along the refine-
ment path.

We consider Equation (30) as providing a succession of approx-
imations to v,

∼ + + …v v v(1) (2)

so that in the case of f approximated by a Gaussian distribution f0,

∫=
∞

v f y y( )d
ys

(1)

and we approximate this with

∫= = −
∞

v t E σ k f y y α y( , , , ) ( )d 1
2

erfc( ( 1))
ys s0

(1)
0 0 0 (38)

where

=α
E
σ

1
2

0
2

2

=E RmtY k t( )s 0

=y E
Es

s

0

and Y is the LambertW function. We fit v0
(1) to data using the Levenburg-

Marquardt method (Seber & Wild, 2003), which is a robust combination
of the Gauss-Newton method and the method of steepest descents. A
Jacobian matrix is computed from the partial derivatives of v(1),

∂
∂
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and

⎜ ⎟
∂
∂

= − ⎡
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5.1. Data generated with a Gaussian

The solution v(1) is used to generate ersatz data, by evaluating it on a
mesh of values of time, and adding ±5% random error to each data
point. Parameter values used to generate the data are =m 650K/s and

=R 8.3144J/(mol kelvins). Then we used the Levenburg-Marquardt
method, to try to recover the correct parameter values E0, σ and k0 by
fitting to the data. The shape of v(1) depends on E0 and k0 in a way that
is highly correlated, so that fitting v(1) using a simple Gauss-Newton
method tends to fail to converge. The initial parameter estimates
chosen to begin the numerical fitting procedure are: =E 2.20E50 J/mol,

=σ 44E3J/mol and =k 1.33E100 s-1. The results after each iteration,
that is, the parameter values obtained by fitting to the data at each step
of the method, are shown in Table 1.

The parameters in Table 1 illustrate that the first two iterations gave
better estimates for each parameter and caused a decrease in the sum of
squares S. The conditioning factor for those iterations was divided by a
factor of 10, reflecting that the Levenberg-Marquardt direction was
chosen to move in the direction of the Gauss-Newton method. However
the third iteration shows the sum of squares started to increase in value.
The response of the Levenberg-Marquardt algorithm was then to in-
crease the conditioning factor by multiplying by a factor of 10 to push
the algorithm in the direction corresponding using that indicated by the
method of steepest descents. The Levenberg-Marquardt iterative
method is repeated, with the sum of squares error terms S reducing
until the results satisfy Equation (42) below

− ≤ −S S
S

10old new

new

5
(42)

At this point the Levenberg-Marquardt algorithm was taken to have
converged. The resulting fit is plotted for each iteration starting with
the starting function, and shown in Fig. 1.

In Fig. 1 the later iterations lie close to each other and it is difficult
to see the fit improving. The improvement of fit is easier to see in a plot
of the residuals as in Fig. 2, the plot of residuals from Fig. 1 with the
same symbols.

5.2. Digitised data

So far we have seen that even though two of the parameters to be
fitted are highly correlated, the Levenberg-Marquardt method can be
used successfully to fit v(1) to data generated using the leading asymp-
totic behaviour of volatile released based on a Gaussian distribution,
plus a small random additive error. We then tested the method using v(1)

to fit data which has been digitised directly from published coal vola-
tilisation experiments. Note that when working with digitised actual

Table 1
The results from =E 2.20E50 J/mol, =σ 44E3 J/mol and =k 1.33E100 s−1.

θ n( ) En σn kn S θ( )n( )

θ(0) 0.220E6 0.44E5 1.33E10 0.1204338066

θ(1) 211035.201 46249.9895 2.47972118E10 0.01237329944

θ(2) 210310.815 42077.4605 2.99977767E10 0.006463076506

θ(3) 212992.377 44346.2851 5.45149898E10 0.009266540071

θ(4) 214391.234 42993.6278 4.64972779E10 0.006461018969

θ(5) 214344.064 42968.0639 4.70126252E10 0.006452457778
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data the underlying distribution is unknown. Using digitized data de-
monstrates that this present method is promising for use with coal data
with an unknown underlying distribution, even if the initial guess for
the distribution f0 is Gaussian. Again we use the Levenberg-Marquardt
method, and we fit to coal data the leading order solution v(1) based on

a Gaussian distribution. We find that the present method works on this
data, which has been digitized from published coal volatilization ex-
periments (Ma, Nagaishi, Yoshida, Xu, & Harada, 2004). Fig. 3 illus-
trates the process, showing successive iterations converging to the data
points, and Fig. 4 shows the residuals of those fits.

5.3. Higher-order correction

We seek to improve our fit and further reduce residuals by adding
the higher-order correction term εf1 (which is non-Gaussian) to the
leading-order Gaussian term f0 of v(1) and repeating the iterative process
shown above, by using the same digitized data (Ma et al., 2004). Using
the high-order approximation to f, +f εf( )0 1 in the formula

∫= ∞v f y dy( )ys
(1) before fitting v(1) to data is one approach to obtaining a
more accurate estimate of the underlying distribution in the DAEM.

The data is fitted with

∫= +
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0 1
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We change the variable of integration in Equation (43) to the time t.
Our approximation to the volatilisation is then
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where

= +
+

K RmY k t
RmY k t

Y k t
( ) ( )

1 ( )0
0

0

and

=t t
k Y k t( )s

0 0

Then v1
(1) is now rewritten as v1

(1*) = − v1 1
(1) to give the fraction of

the volatile yield not yet released,

Fig. 1. Comparison of normalized fractional yield not yet released (v) vs time in
seconds. The circles are data, the solid line is the initial guessed solution (θ(0)),
the dashed line is the result after one iteration, using parameters (θ(1)), the
diagonal crosses indicate the result after two iterations, with parameters (θ(2)),
the crosses indicate the result after three iterations, with parameters (θ(3)), the
boxes indicate the fourth result with parameters (θ(4)) and the line composed of
long dashes indicates the result after five iterations, with parameters (θ(5)).
These parameters are shown in Table 1.

Fig. 2. Residuals of the fits shown in Fig. 1. Symbols used are the same.

Fig. 3. Data (circles) from a digitised graph of volatilisation measurements
showing total normalised amount of volatiles not yet released versus time, and
successive fits to that data. The solid line is the initial guessed solution, the
dotted line is the result after one iteration, the crosses indicate the result after
two iterations, and the dashed line indicates the result after four iterations.

Fig. 4. Residuals of the fits shown in Fig. 3.
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where, differentiating Equation (38),

⎜ ⎟= − ⎡
⎣⎢

− − ⎤
⎦⎥

⎛
⎝

+
+

⎞
⎠

v
t π σ

RmtY k t E
σ

RmtY k t Y k t
Y k t

d
d

1
2

exp ( ( ) )
2

( ) 2 ( )
1 ( )

0
(1)

0 0
2

2 0
0

0

We again use the Levenberg-Marquardt Algorithm procedure to fit
the digitised data as described above. Note that the starting parameter
estimates θ(0) are chosen to be the same as the last parameter values that
were obtained from the last (converged) iteration of v(1)0. To determine
the convergence of the iterative process we used Equation (42). Fig. 5
illustrates the process, showing successive iterations converging to the
data points, and Fig. 6 shows the residuals of those fits.

5.4. Comparison of v0
(1) and v1

(1*)

Comparisons of the two fitted equations v0
(1) and v1

(1*) illustrate that
the results obtained by adding the higher-order correction term εf1 to
the leading-order term f0 provide an improved estimate of the under-
lying distribution. This can be seen both from the sums of squares and
from plots of the residuals. For example after seven iterations, the re-
sults are illustrated in Table 2 below.

The sum of squares in Table 2 illustrates that v1
(1*) provides a more

accurate estimate because the sum of squared residuals S is smaller for
the latter. Note that both iterative processes showed convergence when

N=7.
A plot of the residuals of these fits to digitised data versus time is

provided in Fig. 7 with the crosses being v0
(1) calculations, and the solid

circles being those of v1
(1*) calculations. It can be seen that the latter

provide smaller residuals and a better fit.
The second plot shows the residual results versus fitted values from

Fig. 7 with the v(1) results shown as crosses and v(2*) results shown as
solid circles. Fig. 8 shows that the residuals are generally small com-
pared to the fitted values and that they do not suggest any distinct
pattern. All residuals in v(1) are typically less than 0.13 in absolute
value, whereas the residuals in v(2*) are less than 0.06 in absolute value.
This suggests that the results from v(2*) provides a more accurate esti-
mate parameters than v(1). The analysis of the plotting in Fig. 8 agrees

Fig. 5. Data (boxes) from a digitised graph of volatilisation measurements
showing total normalised amount of volatiles not yet released versus time, and
successive fits to that data. The solid line is the initial guessed solution, the
circles are the result after one iteration, the crosses indicate the result after two
iterations, and the dashed line indicates the result after third iterations.

Fig. 6. Residuals of the fits shown in Fig. 5.

Table 2
The parameters θ(7) after seven iterations in both fitting equations v0

(1) and v1
(1*).

θ(7) in v0
(1) θ(7) in v1

(1*)

θS ( )(7) 0.009596682368 0.009575375913

E0 222004.3158 217815.530752700288
σ 22623.51229 22850.3934920922802
k0 8.52305343E10 9.68677057029868622E10

Fig. 7. Comparison between residuals after fitting v0
(1) and v1

(1*) to digitised data, at
θ = (217815.530752700288, 22850.3934920922802, 9.68677057029868622E10).
The crosses are v0

(1) calculations, and the solid circles are of v1
(1*) calculations.

Fig. 8. A plot of residuals versus fitted values of v0
(1) and v1

(1*) from Fig. 7. The
crosses are v0

(1) calculations, and the solid circles are v1
(1*) calculations.

S. Paea, M. McGuinness Journal of Sustainable Mining 17 (2018) 76–86

84



with the chosen iterative method.
The inverse problem of determining the distribution from mea-

surements of v versus time when θ = (217815.530752700288,
22850.3934920922802, 9.68677057029868622E10) is illustrated in
Fig. 9. Note that when working with digitized actual data, the dis-
tribution is unknown. The crosses in Fig. 9 show the result of calcu-
lating just the leading-order term f0 using Equation (34), and the solid
circles are the result obtained by adding our higher-order correction
term from Equation (35). It can be seen that adding εf1 to f0 shifts the
underlying distribution a little bit toward the right which suggests that
adding εf1 gives a non Gaussian total distribution, that is, the actual data
distribution is non-Gaussian otherwise, the best fit of f0 would lie ex-
actly under it. This result suggests that the method may be useful for
fitting non Gaussian underlying distributions. The underlying dis-
tribution is smooth and shown in Fig. 9.

Note that during the iterative process, special attention needs to be
paid to how to increase and decrease the conditioning factor k n( ) that is
used in the Levenberg-Marquardt method. There are two approaches to
dealing with the situation that may arise, that at some iteration the new
sum of squares is greater than the previous one. The first approach is to
increase k n( ) by a factor and use this together with the most recent
(increased sum of squares) parameter values to perform the next
iteration. The second approach is to increase k n( ) by a factor and use this
together with the last decreased sum of squares parameter values to
compute the next iteration. We find that the second approach converges
faster than the first approach.

6. Conclusions

The DAEM model for the amount of volatile mass released versus
time during coal volatilisation has an exact solution. However, eva-
luation of this solution involves a double integral and a double ex-
ponential function, making it expensive to repeatedly evaluate. We
have reviewed and extended previous work, to approximate the solu-
tion without expensive multiple evaluations by using a succession of
asymptotic approximations, in the case of a relatively wide distribution
function that describes the way that volatility depends on the energy.

In particular we have considered the use of these asymptotic ex-
pansions for solving the inverse problem — given the mass of volatile
released versus time, find the underlying relatively wide distribution of
volatiles versus energy. Direct differencing of the volatility data leads to
ever increasing errors which can swamp the signal with noise, and
prevent taking more accurate approximations which require higher
order differences.

We have outlined and tested a method for smoothing the volatility

data, using the leading-order Gaussian approximation to allow higher
derivatives to be taken without incurring the differencing error penalty.
We find that the method is promising, even in situations where the
underlying distribution may not be Gaussian.

There are two directions forwards from here, one that better ap-
proximates the total mass of volatile released shown in Equation (30)
and another that better approximates the underlying distribution,

∼ + + + …f f εf ε f0 1
2

2 We explored using f0 and +f εf0 1 to approximate
v in this paper. Fitting the higher-order correction term to data im-
proves the calculation of residuals and provides the sum of squared
which is smaller than the sum of squares when fitting the lead-order
solution. If we add the higher-order correction term ε f2

2 and ε f3
3, the

results from the iterative process will provide a more accurate estimate
of the underlying distribution in the DAEM. We have not yet explored
the other direction, of improving the approximation to v by using more
terms + + …v v(1) (2) . Also useful for the future would be to explore
which direction is more important, that is, the relative sizes of correc-
tions in the two directions.
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