Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ dokładności odwzorowania jednoosiowej próby rozciągania stali miękkiej w modelu plastyczności H-M na zachowanie perforowanej cienkościennej powłoki poddanej ściskaniu
Języki publikacji
Abstrakty
The article describes the impact of modeling the plasticity constitutive relationship on the buckling of a short section of a perforated thin-walled steel bar with an open cross-section (modeled as a perforated shell) subjected to compression, being one of the elements of a high-storage system. Numerical calculations were performed in the ABAQUS/Standard program with application of the elasto-plasticity theory of large deformations with additive decomposition of the logarithmic strain tensor and taking into account the nonlinear isotropic or kinematic strain hardening models. The isotropic nature of the material was considered and the plastic flow law associated with the Huber-Mises plasticity condition was assumed. In the elasticity range, linear characteristics of the material was assumed, while in the plasticity range, the shape of the uniaxial strain hardening curve was described as piecewise linear approximation of plastic strain-stress graphs obtained from uniaxial tensile tests. The 24 sets of material data obtained on the basis of experimental tests were analyzed and the influence of differences in the values of material parameters were described (in tests carried out on samples cut from the modeled bars, large differences were found in the values of material parameters and the shape of uniaxial tension graphs). Also the accuracy of strain hardening modeling (the number of sections assumed in the model piecewise linear) on the calculated bearing capacity force value was considered and evaluated.
W artykule opisano wpływ modelowania relacji konstytutywnej plastyczności na wyboczenie poddanego ściskaniu krótkiego odcinka stalowego perforowanego pręta cienkościennego o przekroju otwartym (modelowanego jako perforowana powłoka) stanowiącego jeden z elementów systemu regałów wysokiego składowania. Wykonano obliczenia numeryczne w programie ABAQUS/Standard i wykorzystano zaimplementowaną w nim teorię sprężysto-plastyczności dużych deformacji z addytywną dekompozycją logarytmicznego tensora odkształcenia i nieliniowym wzmocnieniem izotropowym lub kinematycznym. Założono izotropowość materiału i przyjęto prawo płynięcia stowarzyszone z warunkiem plastyczności Hubera-Misesa. W zakresie sprężystym przyjęto liniową charakterystykę materiału, natomiast w zakresie plastycznym przebieg jednoosiowej krzywej wzmocnienia opisano odcinkowo na podstawie wykresów odkształcenie plastyczne – naprężenie otrzymanych z jednoosiowych prób rozciągania. Przeanalizowano 24 zestawy danych materiałowych otrzymanych na podstawie badań doświadczalnych i opisano wpływ różnic w wartościach stałych materiałowych (w testach przeprowadzonych na próbkach wyciętych z modelowanych prętów stwierdzono duże różnice w wartościach stałych materiałowych i charakterze wykresów rozciągania) oraz dokładności modelowania wzmocnienia (przyjętej liczbie odcinków w modelu odcinkowo liniowym) na obliczaną wartość nośności.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
209--224
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
- [1] M. Prisco and M. Colombo, “FRC thin walled structures: opportunities and threats”, in 8th RILEM International Symposium on Fiber Reinforced Concrete: challenges and opportunities (BEFIB 2012). RILEM Publications SARL, 2013, pp. 23-49.
- [2] K. Falkowicz, “Stability analysis of thin-walled perforated composite columns using Finite Element Method”, Materials, vol. 15, no. 24, art. no. 8919, 2022, doi: 10.3390/ma15248919.
- [3] C. Ajdukiewicz and M. Gajewski, “Verification of the thin-walled beam theory with application of FEM and shell modelling”, in IOP Conference Series: Materials Science and Engineering, vol. 661, 2019, doi: 10.1088/1757-899X/661/1/012005.
- [4] J.B. Obrębski, Cienkościenne sprężyste pręty proste. Warsaw: Oficyna Wydawnicza Politechniki Warszawskiej, 1991.
- [5] D.K. Pham, C.H. Pham, and G.J. Hancock, “Elastic buckling solution for perforated thin-walled channel sections in shear with an aspect ratio of 2.0”, in CIGOS 2019, Innovation for Sustainable Infrastructure. Lecture Notes in Civil Engineering, vol. 54, C. Ha-Minh, et al., Eds. Singapore: Springer, 2020, pp. 275-280, doi: 10.1007/978-981-15-0802-8_41.
- [6] A. Piotrowski, M. Gajewski, and C. Ajdukiewicz, “Application of digital image correlation system for analysis of local plastic instabilities of perforated thin-walled bars”, in MATEC Web of Conferences, vol. 196, art. no. 1032, 2018, doi: 10.1051/matecconf/201819601032.
- [7] Z. Yao and K. Rasmussen, “Finite Element modelling and parametric studies of perforated thin-walled steel columns”, Research Report No. 948. University of Sydney, Faculty of Engineering, School of Civil Engineering, Sydney, Australia, 2014.
- [8] Ł. Kowalewski, A. Piotrowski, M. Gajewski, and S. Jemioło, “FEM application for determination of post-critical deformation modes of perforated thin-walled bars”, in Monographs from Scientific Seminars Organized by Polish Chapters International Association for Shell and Spatial Structures. Olsztyn: University of Warmia and Mazury, Faculty of Geodesy, Geospatial and Civil Engineering, 2016, pp. 27-30.
- [9] Ł. Kowalewski, A. Piotrowski, M. Gajewski, and S. Jemioło, “Determination of critical forces with corresponding deformation modes for perforated thin-walled bars”, in Monographs from Scientific Seminars Organized by Polish Chapters International Association for Shell and Spatial Structures. Bydgoszcz: University of Science and Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, 2017, pp. 14-17.
- [10] A. Piotrowski, L. Kowalewski, R. Szczerba, M. Gajewski, and S. Jemiolo, “Buckling resistance assessment of thin-walled open section element under pure compression”, MATEC Web of Conferences, vol. 86, art. no. 01021, 2016, doi: 10.1051/matecconf/20168601021.
- [11] A. Piotrowski, “Weryfikacja modeli konstytutywnych sprężysto-plastyczności przy zastosowaniu MES i optycznej korelacji obrazu”, PhD thesis, Warsaw University of Technology, Poland, 2023.
- [12] P. Wysmulski, K. Falkowicz, and P. Filipek, “Buckling state analysis of compressed composite plates with cut-out”, Composite Structures, vol. 274, art. no. 114345, 2021, doi: 10.1016/j.compstruct.2021.114345.
- [13] T. da Silveira, J.P.S. Neufeld, L.A.O. Rocha, E.D. dos Santos, and L.A. Isoldi, “Numerical analysis of biaxial elasto-plastic buckling of perforated rectangular steel plates applying the Constructal Design method”, IOP Conference Series: Materials Science and Engineering, vol. 1048, 2021, doi: 10.1088/1757-899X/1048/1/012017.
- [14] M. Nedelcu, “Buckling mode identification of perforated thin-walled members by using GBT and shell FEA”, Thin-Walled Structures, vol. 82, pp. 67-81, 2014, doi: 10.1016/j.tws.2014.04.005.
- [15] K. Rzeszut, “Selected aspects of stability of thin-walled steel structures with clearences and initial imperfections”, in Lightweight Structures in Civil Engineering. Contemporary Problems. Local Seminar IASS Polish Chapters, M. Kaminski, Ed. Łódz, 2018, pp. 119-125.
- [16] V. Rybakov, Q. Ha, A. Gordeeva, and K. Urmanceva, “The stability of the thin-walled perforated compressed elements”, in Sustainable Energy Systems: Innovative Perspectives. SES 2020. Lecture Notes in Civil Engineering, vol. 141, A. Sinitsyn, Ed. Cham: Springer, 2021, pp. 420-432, doi: 10.1007/978-3-030-67654-4_45.
- [17] B. Salhab and Y. Wang, “An experimental study of perforated cold-formed thin-walled steel studs in fire”, in 4th international conference on advances in steel structures (ICASS05), Tongji, China. Tongji: 2005.
- [18] A. Piotrowski, “Influence of imperfection on buckling resistance of perforated thin-walled bar with very low slenderness - FEM analysis and comparison with experimental results”, IOP Conference Series: Materials Science and Engineering, vol. 661, 2019, doi: 10.1088/1757-899X/661/1/012003.
- [19] A. Piotrowski and M. Gajewski, “Buckling resistance of short perforated thin-walled bars – FEM analysis and experimental results”, in: Theoretical foundation of civil engineering. Mechanics of materials and structures, vol. 9, A. Szwed and I. Kaminska, Eds. Warsaw: Oficyna Wydawnicza Politechniki Warszawskiej, 2019, pp. 21-32.
- [20] A. Piotrowski, M. Gajewski and C. Ajdukiewicz, “Local plastic instabilities of perforated thin-walled bars – FEM modelling and DIC verification”, in Materials Research Proceedings, vol. 12, pp. 71-76, 2019, doi: 10.21741/9781644900215-10.
- [21] A. Piotrowski, M. Gajewski, C. Ajdukiewicz, Ł. Kowalewski, and S. Jemioło, “Experimental and numerical determination of critical forces for perforated thin walled bars”, in Lightweight Structures in Civil Engineering. Contemporary Problems. Local Seminar IASS Polish Chapters, M. Kamiński, Ed. Łódź, 2018, pp. 109-114.
- [22] ABAQUS/Standard User’s manual, Version 6.11. Dassault Systèmes, 2011.
- [23] PN-EN 1993-1-1:2006 Eurocode 3: Design of steel structures: General rules and rules for buildings. PKN, 2006.
- [24] L.S. da Silva, R.A.D. SimoÞes, and H. Gervaìsio, Design of steel structures: Eurocode 3: Design of steel structures, part 1–1 – General rules and rules for buildings. Brussels: ECCS, 2015, doi: 10.1002/9783433606483.
- [25] W.W. Yu and R.A. LaBoube, Cold-formed steel design, 4th ed. John Wiley & Sons, 2010, doi: 10.1002/9780470949825.
- [26] A. Piotrowski, M. Gajewski, and C. Ajdukiewicz, “Experimental determination of critical forces for perforated thin walled bars in case of hinged support”, in Lightweight Structures in Civil Engineering Proceedings. 25th LSCE, P. Bilko and L. Małyszko, Eds. Olsztyn: University of Warmia and Mazury, 2019.
- [27] S. Jemioło and M. Gajewski, Hipersprężystoplastyczność. Warsaw: Oficyna Wydawnicza Politechniki Warszawskiej, 2014.
- [28] E.A. de S. Neto, D. Pericì, and D.R.J. Owen, Computational methods for plasticity: theory and applications. Chichester, West Sussex, UK: John Wiley and Sons Ltd, 2008, doi: 10.1002/9780470694626.
- [29] A.S. Khan and S. Huang, Continuum theory of plasticity. New York: Wiley, 1995.
- [30] J. Lemaitre and J.L. Chaboche, Mechanics of solid materials. Cambridge University Press, 1990.
- [31] J. Lubliner, Plasticity Theory. Mineola, NY, USA: Dover Publications, 2008.
- [32] D. Hibbit, B. Karlsson, and P. Sorensen, ABAQUS Theory manual, Version 6. Pawtucket: Hibbitt, Karlsson and Sorensen, 2001.
- [33] D. Hibbit, B. Karlsson, and P. Sorensen, ABAQUS/Standard User’s manual, Version 6. Pawtucket: Hibbitt, Karlsson and Sorensen, 2001.
- [34] Massachusetts Institute of Technology, “Defining plasticity in Abaqus”. [Online]. Available: https://abaqusdocs. mit.edu/2017/English/SIMACAEGSARefMap/simagsa-c-matdefining.htm. [Accessed: 30 Nov. 2023].
- [35] D. Hibbit, B. Karlsson, and P. Sorensen, ABAQUS Verification manual, Version 6. Pawtucket: Hibbitt, Karlsson and Sorensen, 2001.
- [36] M. Gajewski, C. Ajdukiewicz, and A. Piotrowski, “Verification of plasticity theory with isotropic hardening and additive decomposition of left deformation tensor using digital image correlation system”, Solid State Phenomena, vol. 240, pp. 61-66, 2016, doi: 10.4028/www.scientific.net/SSP.240.61.
- [37] M. Giżejowski, R. Szczerba, M. Gajewski, and Z. Stachura, “On the resistance evaluation of lateral-torsional buckling of bisymmetrical I-section beams using Finite Element simulations”, Procedia Engineering, vol. 153, pp. 180-188, 2016, doi: 10.1016/j.proeng.2016.08.100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ae6614a-a93a-4618-b2fc-05443be1302d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.