PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Informational resources processing intellectual systems with textual commercial content linguistic analysis usage constructional means and tools development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article content lies in solving the important applied scientific problem of the informational resources processing intellectual systems (IRPISes) with textual commercial content linguistic analysis usage creation. The IRPISes functioning mathematical ensuring was developed. The IRPISes construction means and methods will be developed on the basis of created mathematical models. Such systems have the widespread usage, in particular for the forming, managing and maintenance of the expanding content volume in Internet, running e-business, during the online and offline content realization systems, cloud storage and cloud computing. The increase in the content volume causes the proper quality and productivity evaluation of the very content author. The increase in the evaluation criterions allows covering the broader aspect range of any author’s / moderator’s work.
Twórcy
autor
  • Software Department, Lviv Polytechnic National University
autor
  • Information Systems and Networks Department, Lviv Polytechnic National University
autor
  • Applied Linguistics Department, Lviv Polytechnic National University
Bibliografia
  • 1. Baeza-Yates R. and Rebeiro-Neto B. 1999. Modern Information, Menlo Parl, California, New York : ACM Press, Addison-Wesley. Available online at: <http://people.ischool.berkeley.edu/~hearst/irbook/print/chap10.pdf>.
  • 2. Boiko B. 2004. Content Management Bible. Hoboken.
  • 3. Braslavski P. and Tselishchev A. 2005. Style- Dependent Document Ranking. In Proc. RCDL’2005. Available online at: <http://www.rcdl2005.uniyar.ac.ru/ru/RCDL2005/papers/sek7_1_paper.pdf>.
  • 4. Brin S. and Page L. 2005. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Available online at: <http://wwwdb.stanford.edu/pub/papers/google.pdf>.
  • 5. CM Lifecycle Poster. Content Management Professionals. 2010. Available online at:<http://www.cmprosold.org/resources/poster/>
  • 6. EMC, IBM and Microsoft. 2008. Content Management Interoperability Services. Part I. Version 0.5. Hopkinton, 76.
  • 7. Grefenstette G. 1995. Automatic Thesaurus Generation from Raw Text using Knowledge-Poor Techniques. Proceedings of SIGIR.
  • 8. Hearst M.A. 1992. Automatic Acquisition of Hyponyms from Large Text Corpora. Proc. of the 14th International Conference on Computational Linguistics, Nantes, France, Available online at: <http://acl.ldc.upenn.edu/C/C92/C92-2082.pdf>.
  • 9. Karlgren J. and Cutting D. 1994. Recognizing Text Genres with Simple Metrics Using Discriminant Analysis. In Proceedings of the 15th International Conference on Computational Linguistics, Kyoto, vol. 2, Рp. 1071-1075. Available online at: <http://www.sics.se/~jussi/Papers/1994_Coling_Kyoto_l/cmplglixcol.ps>.
  • 10. Manning C.D., Schutze H. 2005. Foundations of Statistical Natural Language Processing. Chapter 5: Collocations. E-version of the chapter.
  • 11. Manning D.C., Raghavan P., Schutze H. 2007. Introduction to Information Retrieval / // Cambridge University Press. The upcoming book's chapters.
  • 12. Manning D.C., Raghavan P., Schütze H. 2008. An Introuction to information retrieval. Cambridge University Press, Cambridge, England. Available online at: <http://nlp.stanford.edu/IRbook/pdf/irbookonlinereading.pdf>.
  • 13. Sato S., Sasaki Y. 2003. Automatic collection ofrelated terms from the web. In Proc. 41st ACL, Рp.121–124.
  • 14. Sebastiani F. 2002. Machine Learning in Automated Text Categorization. ACM Computing Surveys, Vol. 34, No. 1, Рp.1-47.
  • 15. Segalovich I. 2002. A fast morphological algorithm with unknown word guessing induced by a dictionary for a web search engine, Available online at: <http://company.yandex.ru/articles/iseg-lasvegas.html + the forum discussion>.
  • 16. Takkinen J. 2006. IRI: Introduktion och IRsystemgrunder (modellering och utvardering).IISLAB/ADIT/IDA, Linkopings universitet. Available online at: <https://www.ida.liu.se/~TDDC08/tddc08-ir1.pdf>.
  • 17. Zamir O. and Etzioni O. 1998. Web Document Clustering: A Feasibility Demonstration. In Proc. SIGIR’98.
  • 18. Ayvazyan S.A. 1989. Prikladnaya statistika: Klassifikatsiya i snizhenie razmernosti: Sprav. izd. Under S.A. Ayvazyan redaction. M.: Finansyi i statistika.
  • 19. Berko A., Vysotska V., Pasichnyk V. 2009. Electronic content commerce systems. Lviv: NULP, р.612. (in Ukrainian).
  • 20. Braslavskiy P.I. 2006. Intellektualnyie informatsionnyie sistemyi. Available online at: <http://www.kansas.ru/ai2006/>.
  • 21. Braslavskiy P.I., Vovk E.A. and Maslov M.Yu. 2002. Fasetnaya organizatsiya internet-kataloga i avtomaticheskaya zhanrovaya klassifikatsiya dokumentov. Kompyuternaya lingvistika i intellektualnyie tehnologii. tretiy internatsionalniy seminar "Dialog-2002". T. 2. Moscow.: Nauka. Рр. 83-93. Available online at: <http://company.yandex.ru/articles/article8.html>.
  • 22. Braslavskiy P.I., Kolyichev I. 2005. eXtragon: eksperimentalnaya sistema dlya avtomaticheskogo referirovaniya veb-dokumentov. Trudyi ROMIP- 2005. Saint Petersburg. Рp. 40-53. Available online at:<http://www.romip.narod.ru/romip2005/03_extragon.pdf>.
  • 23. Gavrilova T.A., Chervinskaya K.R. 1992. Izvlechenie i strukturirovanie znaniy dlya ekspertnyih sistem. M.: Radio i svyaz. (in Russian).
  • 24. Gavrilova T.A., Horoshevskiy V.F. 2000. Bazyi znaniy intellektualnyih sistem, Saint Petersburg. (in Russian).
  • 25. Gladkiy A.V. 1985. Sintaksicheskie strukturyi estestvennogo yazyika v avtomatizirovannyih sistemah obscheniya. Moscow.: Nauka. (in Russian).
  • 26. Dobrov B.N., Lukashevich N.V., Syiromyatnikov S.V. 2003. Formirovanie bazyi terminologicheskih svlovosochetaniy po tekstam predmetnoy oblasti. Elektronnyie biblioteki: Trudyi konferentsii RCDL Saint Petersburg. 201-210. Available online at:<http://rcdl2003.spbu.ru>.
  • 27. Dobryinin V. 2002. Teoriya informatsionnologicheskih sistem. Informatsionnyiy poisk. Saint Petersburg. Available online at: <http://ir.apmath.spbu.ru/publications/dobrynin_ir_intro/>.
  • 28. Ivanov V. 1994. Kontent-analiz: Metodolohiia i metodyka doslidzhennia ZMK. Kyiv. p.112. (in Ukrainian).
  • 29. Ivanov S., Krukovskaya N. 2004. Statisticheskiy analiz dokumentalnyih informatsionnyih potokov Nauchno-tehnicheskaya informatsiya. No 2. Рp.11- 14. (in Russian).
  • 30. Iskusstvennyiy intellekt: Spravochnik: Kn.1: Sistemyi obscheniya i ekspertnyie sistemyi. 1990. Moscow: Radio i svyaz. (in Russian).
  • 31. Iskusstvennyiy intellekt: Spravochnik: Kn.2: Modeli i metodyi. 1990. Moscow: Radio i svyaz, (in Russian).
  • 32. Clifton B. 2009. Google Analytics: professional attendance analysis web sites. Moskva: Williams, p.400 (in Russian).
  • 33. Kovalenko A. 2006. Veroyatnostnyiy morfologicheskiy analizator russkogo i ukrainskogo yazyikov. Available online at: <http://www.keva.ru/stemka/stemka.html>.
  • 34. Kukushkina O.V., Polikarpov A.A., HmelYov D.V. 2001. Opredelenie avtorstva teksta s ispolzovaniem bukvennoy i grammaticheskoy informatsii. Problemyi peredachi informatsii, T.37, No.2. Рp.96-108. Available online at: <http://www.math.torontoedu/dkhmelev/PAPERS/published/gramcodes/gramcodes.pdf>.
  • 35. Lande D., Furashev V., Braychevskyy S. and Grigoriev A. 2006. Modeling and evaluation electronic information streams fundamentals. Kyiv: Engineering, p.348. (in Ukrainian).
  • 36. Leonteva N.N. 2006. Avtomaticheskoe ponimanie tekstov: sistemyi, modeli, resursyi. Moscow: Izdatelskiy tsentr "Akademiya". (in Russian).
  • 37. Neyl K. and Shanmagantan G. 2005. Webinstrument dlya vyiyavleniya plagiata. Otkryityie sistemyi. #01. Рp.40-44. Available online at: <http://www.osp.ru/os/2005/01/040_print.htm>.
  • 38. Nekrestyanov I., Panteleeva N. 2002. Sistemyi tekstovogo poiska dlya Veb. Programmirovanie. No28(4). Рp.207-225. Available online at:<http://meta.math.spbu.ru/~nadejda/papers/webir/web-ir.html>.
  • 39. Osuga S. 1989. Obrabotka znaniy. Moscow: Mir. (in Russian).
  • 40. Vysotska V., Sherbyna Y., Pasіchnyk B., Shestakevich T. 2012. Mathematical linguistics. Lviv: "Novy Svit - 2000", p.359.
  • 41. Penrouz R. 2003. Novyiy um korolya: O kompyuterah, myishlenii i zakonah fiziki. Moscow: URSS. (in Russian).
  • 42. Perspektivyi razvitiya vyichislitelnoy tehniki v 11 kn. Kn. 2. Intellektualizatsiya EVM. 1989. Moscow: Vyisshaya shkola. (in Russian).
  • 43. Popov E.V. 1982. Obschenie s EVM na estestvennom yazyike. Moscow: Nauka. (in Russian).
  • 44. Popov E.V., Fominyih I.B., Kisel E.B., Shapot M.D. 1996. Staticheskie i dinamicheskie ekspertnyie sistemyi. Moscow: Finansyi i statistika. (in Russian).
  • 45. Rao S.R. 1968. Lineynyie statisticheskie metodyi i ih primeneniya. Moscow: Nauka. (in Russian).
  • 46. Segalovich I.V. Kak rabotayut poiskovyie sistemyi / I.V. Segalovich // Mir Internet, - 2002. - #10. Available online at:
  • 47. Sokirko A.V. Morfologicheskie moduli na sayte www.aot.ru / A.V. Sokirko //Materialyi konferentsii "Dialog-2004". Available online at:
  • 48. Solton D. 1979. Dinamicheskie bibliotechnoinformatsionnyie sistemyi.Moscow: Mir, р. 560. (in Russian).
  • 49. Faktornyiy, diskriminantnyiy i klasternyiy analiz. 1989. Moscow: Finansyi i statistika. (in Russian).
  • 50. Fedorchuk A. 2005. Content Monitoring information flows. Nat. Acad. Science Problems. Functioning, Trends of development. Vol. 3. Available online at:<http://www.nbuv.gov.ua/articles/2005/05fagmip.html>
  • 51. Han U., Mani I. 2000. Sistemyi avtomaticheskogo referirovaniya. Otkryityie sistemyi. No12. Available online at: <http://www.osp.ru/os/2000/12/067_print.htm>.
  • 52. Hmelev D. 2000. Raspoznavanie avtora teksta s ispolzovaniem tsepey A.A. Markova. Vestnik MGU, S.9: Filologiya, No2, Рp.115-126. Available online at: <http://www.rusf.ru/books/analysis/vestnik2000win>.htm.
  • 53. Hramtsov P. 1996. Informatsionno-poiskovyie sistemyi Internet. Otkryityie sistemyi. No3. Available online at:<http://www.osp.ru/os/1996/03/46_print.htm>.
  • 54. Lytvyn V. 2013. Design of intelligent decision support systems using ontological approach. Econtechmod: Lublin, Rzeszow, Vol. II, No 1, Рp.31-38. (in Poland).
  • 55. Lytvyn V., Semotuyk O., Moroz O. 2013. Definition of the semantic metrics on the basis of thesaurus of subject area. Econtechmod: Lublin, Rzeszow, Vol. II, No 4, Рp.47-51. (in Poland).
  • 56. Vysochina M. 2014. The innovative approach to the study of decision making in the context of the specific character of a product of managerial work. Econtechmod: Lublin, Rzeszow, Vol. III, No 2, Рp.87-92. (in Poland).
  • 57. Rybytska О., Vovk M. 2014. An application of the fuzzy set theory and fuzzy logic to the problem of predicting the value of goods rests. Econtechmod: Lublin, Rzeszow, Vol. III, No 2, Рp.65-69. (in Poland).
  • 58. Fedasyuk D., Yakovyna V., Serdyuk P., Nytrebych O. 2014. Variables state based software usage model. Econtechmod: Lublin, Rzeszow, Vol. III, No 2, Рp.15-20. (in Poland).
  • 59. Ryshkovets Yu., Zhezhnych P. 2013. Information model of Web-gallery taking into account user’s interests. Econtechmod: Lublin, Rzeszow, Vol. II, No 3, Рp.59-63. (in Poland).
  • 60. Vysotska V., Rishnyak I., Churun L. 2007. Analysis and evaluation of risks in electronic commerce. CAD Systems in Microelectronics, CADSM ’07, 9th International Conference. Рp.332-333. (in Ukrainian).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ae2c332-2a82-4ea1-a74a-bf1a83570450
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.