Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of this study is the investigation of discontinuous boundary-value problems for second-order differential operators with symmetric transmission conditions.We introduce the new notion of weak functions for such type of discontinuous boundary-value problems and develop an operator-theoretic method for the investigation of the spectrum and completeness property of the weak eigenfunction systems. In particular, we define some self-adjoint compact operators in suitable Sobolev spaces such that the considered problem can be reduced to an operator-pencil equation. The main result of this paper is that the spectrum is discrete and the set of eigenfunctions forms a Riesz basis of the suitable Hilbert space.
Wydawca
Czasopismo
Rocznik
Tom
Strony
275--283
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science, Tokat Gaziosmanpaşa University, Tokat, Turkey
autor
- Department of Mathematics, Faculty of Science, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Institute of Mathematics and Mechanics, National Academy of Sciences, Baku, Azerbaijan
autor
- Institute of Mathematics and Mechanics, National Academy of Sciences, Baku, Azerbaijan
autor
- Department of Mathematics, Faculty of Arts and Science, Amasya University, Amasya, Turkey
Bibliografia
- [1] O. Akcay, The representation of the solution of Sturm-Liouville equation with discontinuity conditions, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 4, 1195-1213.
- [2] B. P. Allahverdiev and H. Tuna, Titchmarsh-Weyl theory for Dirac systems with transmission conditions, Mediterr. J. Math. 15 (2018), no. 4, Paper No. 151.
- [3] E. Bairamov and Ş. Solmaz, Spectrum and scattering function of the impulsive discrete Dirac systems, Turkish J. Math. 42 (2018), no. 6, 3182-3194.
- [4] B. P. Belinskiy and J. P. Dauer, On a regular Sturm-Liouville problem on a finite interval with the eigenvalue parameter appearing linearly in the boundary conditions, in: Spectral Theory and Computational Methods of Sturm-Liouville Problems (Knoxville 1996), Lecture Notes Pure Appl. Math. 191, Dekker, New York (1997), 183-196.
- [5] J. R. Cannon and G. H. Meyer, On a diffusion in a fractured medium, SIAM J. Appl. Math. 3 (1971), 434-448.
- [6] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2, Springer, Berlin, 1988.
- [7] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), no. 3-4, 293-308.
- [8] I. C. Gohberg and M. G. Kre˘ın, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr. 18, American Mathematical Society, Providence, 1969.
- [9] P. H. Hung and E. Sánchez-Palencia, Phénomènes de transmission à travers des couches minces de conductivité élevée, J. Math. Anal. Appl. 47 (1974), 284-309.
- [10] M. Kandemir and O. S. Mukhtarov, Nonlocal Sturm-Liouville problems with integral terms in the boundary conditions, Electron. J. Differential Equations 2017 (2017), Paper No. 11.
- [11] M. V. Keldyš, On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations, Doklady Akad. Nauk SSSR (N.S.) 77 (1951), 11-14.
- [12] N. B. Kerimov and R. G. Poladov, Basis properties of the system of eigenfunctions of the Sturm-Liouville problem with a spectral parameter in the boundary conditions, Dokl. Akad. Nauk 442 (2012), no. 1, 14-19.
- [13] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York, 1978.
- [14] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Appl. Math. Sci. 49, Springer, New York, 1985.
- [15] M. R. Lancia and M. A. Vivaldi, On the regularity of the solutions for transmission problems, Adv. Math. Sci. Appl. 12 (2002), no. 1, 455-466.
- [16] O. Muhtarov and S. Yakubov, Problems for ordinary differential equations with transmission conditions, Appl. Anal. 81 (2002), no. 5, 1033-1064.
- [17] O. S. Mukhtarov and K. Aydemir, Eigenfunction expansion for Sturm-Liouville problems with transmission conditions at one interior point, Acta Math. Sci. Ser. B (Engl. Ed.) 35 (2015), no. 3, 639-649.
- [18] O. S. Mukhtarov and K. Aydemir, Basis properties of the eigenfunctions of two-interval Sturm-Liouville problems, Anal. Math. Phys. 9 (2019), no. 3, 1363-1382.
- [19] O. S. Mukhtarov and K. Aydemir, Discontinuous Sturm-Liouville problems involving an abstract linear operator, J. Appl. Anal. Comput. 10 (2020), no. 4, 1545-1560.
- [20] H. Olğar and O. S. Mukhtarov, Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions, J. Math. Phys. 58 (2017), no. 4, Article ID 042201.
- [21] A. M. Sarsenbi and A. A. Tengaeva, On the basis properties of the root functions of two generalized spectral problems, Differ. Uravn. 48 (2012), no. 2, 294-296.
- [22] I. Stakgold, Boundary Value Problems of Mathematical Physics. Vol. II, The Macmillan, New York, 1971.
- [23] A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, The Macmillan, New York, 1963.
- [24] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Math. Libr. 18, North-Holland, Amsterdam, 1978.
- [25] E. Uğurlu, Regular third-order boundary value problems, Appl. Math. Comput. 343 (2019), 247-257.
- [26] J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary condition, Math. Z. 133 (1973), 301-312.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ae19e93-d968-4d32-a86d-a4617eccc4d2