Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In case of maritime communications, we observe a growing interest in deployment of multitask satellite-based solutions and development of new maritime-specific systems intended for improvements in safety of e-navigation. Analysis of different types of currently used maritime communication systems leads, however, to a conclusion that neither global and still very expensive satellite systems nor cheaper, but short-ranged transmission technologies can, on their own, fully meet the today’s expectations and quality requirements formulated for broadband maritime systems. This lack of reliable solutions, offering high throughput and ubiquitous availability of coverage to a wide audience at a relatively low price is one of the main barriers in a widespread implementation of e-navigation initiatives. This issue is addressed in the netBaltic project with the objective to design, deploy and validate in a real maritime environment a non-satellite wireless communication system enabling ship-to-ship and ship-to-shore information exchange via a multi-hop network composed of onshore base stations, maritime vessels and other transit elements such as buoys. In this paper, the idea of a heterogeneous wireless maritime system is presented. Details of the proposed netBaltic node architecture are described highlighting the solutions introduced in the project as a response to specific maritime communication requirements. Numerical results of communication area coverage are presented for four different scenarios utilizing different wireless transmission technologies. In particular, they indicate that when using appropriate wireless communication solutions, the number of vessels being able to connect to Internet is significantly increased as compared to traditional wireless systems (capable of one-hop communication) from 14% for short-range transmission technologies up to as high as 127% in case when relatively long-range transmission technologies are employed within the system.
Czasopismo
Rocznik
Tom
Strony
14--26
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Gdansk University of Technology Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdansk Poland
autor
- Gdansk University of Technology Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdansk Poland
autor
- Gdansk University of Technology Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdansk Poland
autor
- Gdansk University of Technology Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdansk Poland
Bibliografia
- 1. IMO MSC 81/23/10. “Work Programme. Development of an e-Navigation strategy”, Submitted by Japan, Marshall Islands, the Netherlands, Norway, Singapore, the United Kingdom and the United States, International Maritime Organization, (2005)
- 2. J. Rak: „Resilient routing in communication networks”, Springer (2015)
- 3. K. S. Zaidi, V. Jeoti, A. Awang: „Wireless backhaul for broadband communication over sea” in Proc. IEEE 11th Malaysia International Conference on Comm., pp. 298–303 (2013)
- 4. „Working Document toward a draft new Report Maritime Radiocommunication Systems and Requirements”. ITU RSG: IALA, e-NAV14-10.3.6 (2013)
- 5. A. Nowicki, M. Janecki, L. Dzierzbicka-Głowacka, M. Darecki, P. Piotrowski: The use of satellite data in the operational 3d coupled ecosystem model of the Baltic Sea (3d cembs), POLISH MARITIME RESEARCH 1(89) vol. 23, pp. 20-24, (2016)
- 6. IMO NCSR Annex 7.: „Draft e-navigation strategy implementation plan” (2014) http://www.imo.org/en/ OurWork/Safety/Navigation/Documents/enavigation/SIP
- 7. L. Lambrinos, C. Djouvas: „Creating a maritime wireless mesh infrastructure for real-time applications”, in Proc. IEEE GLOBECOM Workshops, pp. 529–532 (2011)
- 8. J. Arroyo: „Automatic Identification System”, (2011) http://www.nmea.org/Assets/nmea%20collision%20 avoidance%20through%20ais.pdf
- 9. GMDSS Manual, 2015 Edition - International Maritime Organization, (2015)
- 10. ITU, „Maritime broadband wireless mesh networks”, report ITU-R M.2202, (2010)
- 11. J. Wozniak, K. Gierlowski and M. Hoeft, „Broadband communication solutions for maritime ITSs: Wider and faster deployment of new e-navigation services,” 2017 15th ITST, Warsaw, pp. 1-11, (2017)
- 12. VDES: VHF Data Exchange System Overview. Workshop VDES Tokyo, (2014)
- 13. „Technical characteristics for a VHF data exchange system in the VHF maritime mobile band. M Series: Mobile, radiodetermination, amateur and related satellite services”, Recommendation ITU-R M.2092-0, (2015)
- 14. „Development of VHF Data Exchange System (VDES)”, Report on IALA Workshop. Tokyo, Japan, (2016)
- 15. J. S. Pathmasuntharam et al.: „TRITON: High speed maritime mesh networks, „ 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, pp. 1–5, (2008)
- 16. J. Wozniak, K. Gierlowski and M. Hoeft, „Broadband communication solutions for maritime ITSs: Wider and faster deployment of new e-navigation services,” 2017 15th International Conference on ITS Telecommunications (ITST), Warsaw, 2017, pp. 1-11.
- 17. D.-S. Yoo, H.-J. Kim, J.-K. Choi, B.-T. Jang, S.-H. Ro: „A novel antenna tracking technique for maritime broadband communication (MariComm) system”, in Proc. ICACT2015 (17th International Conference on Advanced Communication Technology), pp. 225–229 (2015)
- 18. „IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” in IEEE Std 802.16-2004 (Revision of IEEE Std 802.16-2001), (2004)
- 19. „IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems Amendment 3: Advanced Air Interface,” in IEEE Std 802.16m-2011 (Amendment to IEEE Std 802.16-2009) , vol., no., pp.1-1112, (2011)
- 20. M.-T. Zhou, V. D. Hoang, H. Harada: „TRITON: highspeed maritime wireless mesh network. IEEE Wireless Communications”, vol. 20, no. 5, pp. 134–142 (2013)
- 21. R. Boreli, Y. Ge, T. Iyer, C. Dwertmann, J. S. Pathmasuntharam: „Intelligent Middleware for High Speed Maritime Mesh Networks with Satellite Communications”, 9th int’l Conf. on ITS Telecomm., France (2009)
- 22. IEEE, „IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”, IEEE Std 802.11-2016, 2016
- 23. „IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications – Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz”, IEEE Std 802.11ac2013, (2013)
- 24. „IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems,” in IEEE Std 802.16-2009 (Revision of IEEE Std 802.16-2004) pp.1-2080, (2009)
- 25. „IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1,” in IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/ Cor 1-2005 (Amendment and Corrigendum to IEEE Std 802.16-2004), (2006)
- 26. Ubiquity Networks, AirMax Technical Description, https:// dl.ubnt.com/AirMax_ppt.pdf, retrieved 2017
- 27. RADWIN, FiberinMotion Wireless Mobility, http://www. radwin.com/products/fiberinmotion, retrieved 2017
- 28. M. Hoeft, P. Kaminski, J. Wozniak: „Logical Interface for Soft Handover - An Effective Scheme of Handovers in Proxy Mobile IPv6”, 2015 8th IFIP Wireless and Mobile Networking Conference (WMNC), Munich, pp. 72–79, (2015)
- 29. M. Hoeft, K. Gierlowski, J. Wozniak: „Heterogeneous wireless communications system over the Baltic sea”, Telecom. Review + Telecom. News 8-9, pp. 1196–1200, (2016) (in Polish).
- 30. M. Hoeft, K. Gierlowski, K. Nowicki, et al.: „netBaltic: Enabling Non-Satellite Wireless Communications over the Baltic Sea”, Global Newsletter May 2016, pp. 2–4. In: IEEE Communications Magazine, (2016)
- 31. Perkins, C.; Belding-Royer, E.; Das, S., RFC 3561: Ad hoc On-Demand Distance Vector (AODV) Routing. IETF, 2003.
- 32. S.Kent, K. Seo, RFC4301 Security Architecture for the Internet Protocol. DOI: 10.17487/RFC4301, (2005).
- 33. A.Vahdat, D. Becker: „Epidemic routing for partially connected ad hoc networks”, Technical Report CS-2000-06, Department of Computer Science, Duke University, (2000)
- 34. K. Bronk, A. Lipka, R. Niski, B. Wereszko, K. Wereszko: „Measurement verification of the cellular systems’ ranges achievable in the maritime environment”, Telecom. Review + Telecom. News vol. 6, pp. 463–466, (2016) (in Polish)
- 35. Y. H. Lee, F. Dong, and Y. S. Meng, „Near sea-surface mobile radiowave propagation at 5 GHz: measurements and modeling,” Radioengineering, vol. 23, no. 3, pp. 824–830, (2014)
- 36. Kongsberg MBR 179 https://www.km.kongsberg.com/ks/ web/nokbg0397.nsf/AllWeb/6D9A832306BAC3F8C1257F CA0046926B/$file/Datasheet_MBR179.pdf
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5adab334-0e12-491e-9c7c-5f9ed32bcb87