PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Standard Models of Abstract Intersection Theory for Operators in Hilbert Space

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For an operator in a possibly infinite-dimensional Hilbert space of a certain class, we set down axioms of an abstract intersection theory, from which the Riemann hypothesis regarding the spectrum of that operator follows. In our previous paper (2011) we constructed a GNS (Gelfand–Naimark–Segal) model of abstract intersection theory. In this paper we propose another model, which we call a standard model of abstract intersection theory. We show that there is a standard model of abstract intersection theory for a given operator if and only if the Riemann hypothesis and semisimplicity hold for that operator. (For the definition of semisimplicity of an operator in Hilbert space, see the Introduction.) We show this result under a condition for a given operator which is much weaker than the condition in the previous paper. An operator satisfying this condition can be constructed by using the method of automorphic scattering of Uetake (2009). Combining this with a result from Uetake (2009), we can show that a Dirichlet L-function, including the Riemann zeta-function, satisfies the Riemann hypothesis and its all nontrivial zeros are simple if and only if there is a corresponding standard model of abstract intersection theory. Similar results can be proven for GNS models since the same technique of proof for standard models can be applied.
Rocznik
Strony
149--175
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
autor
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
Bibliografia
  • [BU] G. Banaszak and Y. Uetake, Abstract intersection theory and operators in Hilbert space, Comm. Number Theory Phys. 5 (2011), 699-712.
  • [C] A. Connes, Noncommutative geometry and the Riemann zeta function, in: Mathematics: Frontiers and Perspectives, V. Arnold et al. (eds.), Amer. Math. Soc., 2000, 35-54.
  • [CM] A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives, Amer. Math. Soc. Colloq. Publ. 55, Amer. Math. Soc., Providence, RI, and Hindustan Book Agency, New Delhi, 2008.
  • [D1] C. Deninger, Motivic L-functions and regularized determinants, in: Proc. Sympos. Pure Math. 55, Part I, Amer. Math. Soc., 1994, 707-743.
  • [D2] C. Deninger, Some analogies between number theory and dynamical systems on foliated spaces, in: Proc. ICM, Berlin, Vol. I, Doc. Math., 1998, Extra Vol. I, 163-186.
  • [Ge] I. M. Gelfand, Automorphic functions and the theory of representations, in: Proc. ICM, Stockholm, 1962, 74-85.
  • [GoGK] I. Gohberg, S. Goldberg and M. A. Kaashoek, Classes of Linear Operators, Vol. I, Oper. Theory Adv. Appl. 49, Birkhäuser, Basel, 1990.
  • [Gro] A. Grothendieck, Sur une note de Mattuck-Tate, J. Reine Angew. Math. 200 (1958), 208-215.
  • [Hux] M. N. Huxley, Scattering matrices for congruence subgroups, in: Modular Forms (Durham, 1983), R. A. Rankin (ed.), Ellis Horwood, Chichester, and Halsted Press, New York, 1984, 141-156.
  • [LP] P. D. Lax and R. S. Phillips, Scattering Theory for Automorphic Functions, Ann. of Math. Stud. 87, Princeton Univ. Press, Princeton, NJ, 1976.
  • [Mac] B. D. MacCluer, Elementary Functional Analysis, Grad. Texts in Math. 253, Springer, 2009.
  • [Mil] J. S. Milne, Étale Cohomology, Princeton Math. Ser. 33, Princeton Univ. Press, Princeton, NJ, 1980.
  • [Mon] P. Monsky, p-Adic Analysis and Zeta Functions, Lectures in Math. Dept. Math. Kyoto Univ. 4, Kinokuniya Book-Store, Tokyo, 1970.
  • [Pat] S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Univ. Press, Cambridge, 1988.
  • [PavF] B. S. Pavlov and L. D. Faddeev, Scattering theory and automorphic functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 27 (1972), 161-193 (in Russian); English transl.: J. Soviet Math. 3 (1975), 522-548.
  • [S] J.-P. Serre, Analogues Kählériens de certaines conjectures de Weil, Ann. Of Math. 71 (1960), 392-394.
  • [T1] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.
  • [T2] J. Tate, Conjectures on algebraic cycles in ℓ-adic cohomology, in: Proc. Sympos. Pure Math. 55, Part I, Amer. Math. Soc. 1994, 71-83.
  • [U] Y. Uetake, Spectral scattering theory for automorphic forms, Integral Equations Operator Theory 63 (2009), 439-457.
  • [W1] A. Weil, Euvres Scientifiques/Collected Papers, papers, private communication and books concerning intersection theory: [1940b], [1941], [1942], [1946a], [1948a], [1948b] (Vol. I), [1954h] (Vol. II), Springer, New York, 1979.
  • [W2] A. Weil, Euvres Scientifiques/Collected Papers, papers concerning explicit formulas: [1952b] (Vol. II), [1972] (Vol. III), Springer, New York, 1979.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ad98f35-c210-4691-b6b1-09e0ff00950d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.