PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a novel 124 MPa strength green reactive powder concrete employing waste glass and locally available cement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a new reactive powder concrete (RPC) was developed, with environmentally friendly typical RPC components obtained from ground quartz substituted by the waste glass. In this manner, the carbon footprint and final cost are minimized by replacing aggregates and reducing cement. A challenge in this study was using high-celite phase available cement and avoiding the alkali-silica reaction. The Box–Wilson design and Derringer–Suich optimization were used to create an RPC mixture with a low cement content and high-volume waste glass dosage that achieved a compressive strength of more than 120 MPa. It was demonstrated that having all ground waste glass particles smaller than 1000 µm is not sufficient to prevent the alkali-silica expansion. Furthermore, commercially available cement with a high celite proportion had a modest beneficial influence on the compressive strength at an early-age but a significant detrimental impact on the RPC’s compressive strength at 28 days. Finally, the current study proved the potential of manufacturing an RPC that satisfied the strength threshold criterion while utilizing a local cement with over 12% celite and a substantial volume of waste glass powder comprising more than half of the RPC weight.
Rocznik
Strony
art. no. e161, 2023
Opis fizyczny
Bibliogr. 66 poz., fot., rys., wykr.
Bibliografia
  • 1. Song J, Liu S. Properties of reactive powder concrete and its appli- cation in highway bridge. Adv Mater Sci Eng. 2016. https://doi. org/10.1155/2016/5460241.
  • 2. Kim M-J, Oh T, Yoo D-Y. Influence of curing conditions on the mechanical performance of ultra-high-performance strain- hardening cementitious composites, Archives of Civil and Mechanical. Engineering. 2021;21:1–11. https://doi.org/10.1007/ s43452-021-00275-7.
  • 3. Zdeb T, Śliwiński J. The influence of selected material and tech- nological factors on mechanical properties and microstructure of reactive powder concrete (RPC). Arch Civ Eng. 2011;57(2):227– 46. https://doi.org/10.1007/s43452-021-00275-7.
  • 4. Chen T, Gao X, Ren M. Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete. Constr Build Mater. 2018;158:864–72. https://doi.org/10.1016/j.conbu ildmat.2017.10.074.
  • 5. Li W, Huang Z, Zu T, Shi C, Duan WH, Shah SP. Influence of nanolimestone on the hydration, mechanical strength, and autog- enous shrinkage of ultrahigh-performance concrete. J Mater Civ Eng. 2016;28(1):04015068. https://doi.org/10.1061/(ASCE)MT. 1943-5533.0001327.
  • 6. Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z. A review on ultra high performance concrete: Part I. Raw Mater Mixture Design Construct Build Mater. 2015;101:741–51. https:// doi. org/ 10. 1016/j.conbuildmat.2015.10.088.
  • 7. Abellán-García J. Dosage optimization and seismic retrofitting applications of Ultra-HighPerformance Fiber Reinforced Concrete (UHPFRC). Universidad Politécnica de Madrid. 2020. https://doi. org/10.20868/UPM.thesis.66122.
  • 8. Li S, Zheng W, Zhou W, Jiang Z, Wang Y. Experiment and vali- dation of local bearing capacity for reactive powder concrete confined with high-strength spirals. Archiv Civil Mech Eng. 2022;22(1):40. https://doi.org/10.1007/s43452-021-00363-8.
  • 9. Abellan-Garcia J, Guzmán-Guzmán JS. Random forest-based opti- mization of UHPFRC under ductility requirements for seismic retrofitting applications. Constr Build Mater. 2021;285:122869.
  • 10. Bae Y, Pyo S. Ultra high performance concrete (UHPC) sleeper: structural design and performance. Eng Struct. 2020;210:110374. https://doi.org/10.1016/j.engstruct.2020.110374.
  • 11. Zeyad AM, Hakeem IY, Amin M, Tayeh BA, Agwa IS. Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding. J Build Eng. 2022;58:104960. https://doi.org/10.1016/j.jobe.2022.104960.
  • 12. Yao C, Shen A, Guo Y, Lyu Z, He Z, Wu H. A review on autogenous self-healing behavior of ultra-high performance fiber reinforced concrete (UHPFRC). Archiv Civil Mech Eng. 2022;22(3):145. https://doi.org/10.1007/s43452-022-00462-0.
  • 13. Abellán-García J, Núñez-López A, Torres-Castellanos N, Fernán- dez-Gómez J. Factorial design of reactive concrete powder con- taining electric arc slag furnace and recycled glass powder. Dyna. 2020;87(213):42–51.
  • 14. Yazıcı H, Yardimci MY, Aydin S, Karabulut AŞ. Mechani- cal properties of reactive powder concrete containing mineral admixtures under different curing regimes. Constr Build Mater. 2009;23(3):1223–31. https://doi.org/10.1016/j.conbuildmat.2008. 08.003.
  • 15. Vaitkevičius V, Šerelis E, Hilbig H. The effect of glass powder on the microstructure of ultra high performance concrete. Constr Build Mater. 2014;68:102–9. https://doi.org/10.1016/j.conbuild- mat.2014.05.101.
  • 16. Abellán-García J, Núñez-López A, Torres-Castellanos N, Fernán- dez-Gómez J. Effect of FC3R on the properties of ultra-high-per- formance concrete with recycled glass. Dyna. 2019;86(211):84– 93. https://doi.org/10.1016/j.cscm.2022.e01149.
  • 17. Amin M, Zeyad AM, Tayeh BA, Agwa IS. Effects of nano cot- ton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates. Construct Build Mater. 2021;302:124196. https://doi.org/10.1016/j.conbu ildmat.2021.124196.
  • 18. Abellán-García J, García-Castaño E. Development and research on ultra-high-performance concrete dosages in Colombia: a review. ACI Mater J. 2022;119(3):209–21. https:// doi. org/ 10. 14359/ 51734617.
  • 19. Richard P, Cheyrezy M. Composition of reactive powder con- cretes. Cem Concr Res. 1995;25(7):1501–11. https://doi.org/10. 1016/0008-8846(95)00144-2.
  • 20. Kaminsky A, Krstic M, Rangaraju P, Tagnit-Hamou A, Thomas MD. Ground-glass pozzolan for use in concrete. Concr Int. 2020;42(11):24–32.
  • 21. Reyes García CD, Zapata Sella LM. Iniciativas para la recu- peración de envases de vidrio generados por la industria de los licores: revisión de literatura, Universidad Agustiniana, Bogotá, Colombia; 2019. http://repositorio.uniagustiniana.edu.co/handle/ 123456789/687.
  • 22. Guo P, Bao Y, Meng W. Review of using glass in high-perfor- mance fiber-reinforced cementitious composites. Cement Con- crete Composit. 2021;120:104032. https:// doi. org/ 10. 1016/j. cemconcomp.
  • 23. Guo P, Meng W, Nassif H, Gou H, Bao Y. New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construct Build Mater. 2020;257:119579. https://doi.org/10.1016/j.conbuildmat.2020.119579.
  • 24. Nematollahi B, Ranade R, Sanjayan J, Ramakrishnan S. Ther- mal and mechanical properties of sustainable lightweight strain hardening geopolymer composites. Archiv Civil Mech Eng. 2017;17(1):55–64. https://doi.org/10.1016/j.acme.2016.08.002.
  • 25. Hemmings RT. Process for converting waste glass fiber into value added products, final report. Albacem LLC; 2005.
  • 26. Idir R, Cyr M, Tagnit-Hamou A. Use of fine glass as ASR inhibitor in glass aggregate mortars. Constr Build Mater. 2010;24(7):1309– 12. https://doi.org/10.1016/j.conbuildmat.2009.12.030.
  • 27. Abellán García J, Torres Castellanos N, Fernández Gómez J, Núñez López A. Development of cost-efficient UHPC with local materials in Colombia; (2020).
  • 28. Abellan-Garcia J. Tensile behavior of recycled-glass-UHPC under direct tensile loading. Case Stud Construct Mater. 2022;17:e01308. https://doi.org/10.1016/j.cscm.2022.e01308.
  • 29. Abellán-García J, Fernández J, Torres-Castellanos N, Núñez- López A. Tensile behavior of normal-strength steel-fiber green ultra-high-performance fiber-reinforced concrete. ACI Mater J. 2021;118(1):127–38. https://doi.org/10.14359/51725992.
  • 30. Abellán-García J, Sánchez-Díaz JAD, Ospina-Becerra VE. Neural network-based optimization of fibres for seismic ret- rofitting applications of UHPFRC. Europ J Environ Civil Eng. 2022;26(13):6305–33.
  • 31. Hamada H, Alattar A, Tayeh B, Yahaya F, Thomas B. Effect of recycled waste glass on the properties of high-performance con- crete: a critical review. Case Stud Construct Mater. 2022. https:// doi.org/10.1016/j.cscm.2022.e01149.
  • 32. Soliman N, Tagnit-Hamou A. Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr Build Mater. 2017;139:374–83. https://doi.org/10.1016/j.conbu ildmat.2017.02.084.
  • 33. Jaramillo-Murcia D, Abellán-García J, Torres-Castellanos N, García-Castaño E. Properties analysis of ultra-high-performance concrete with recycled glass and limestone powders. ACI Mater J. 2022;119(5):153–63.
  • 34. Tagnit-Hamou A, Soliman N, Omran A. Green ultra-high-per- formance glass concrete. International interactive symposium on ultra-high performance concrete: Iowa State University Digital Press; 2016.
  • 35. Soliman NA, Tagnit-Hamou A. Using glass sand as an alternative for quartz sand in UHPC. Constr Build Mater. 2017;145:243–52. https://doi.org/10.1016/j.conbuildmat.2017.03.187.
  • 36. ASTM, ASTM C1260–22 “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)”. American Society for Testing and Materials. West Conshohocken, Pennsyl- vania, United States; 2022.
  • 37. Abellán-García J, Fernández-Gómez JA, Torres-Castellanos N, Núñez-López AM. Machine learning prediction of flexural behavior of UHPFRC, Fibre Reinforced Concrete: Improvements and Innovations: RILEM-fib International Symposium on FRC (BEFIB) in 2020 10, Springer, 2021, pp. 570–583.
  • 38. Abellán-García J, Torres-Castellanos N, Fernández-Gómez J, Núñez-López A. Ultra-high-performance concrete with local high unburned carbon fly ash. Dyna. 2021;88(216):38–47. https://doi. org/10.15446/dyna.v88n216.89234.
  • 39. National Cancer Institute, Crystalline Silica, Cancer Causes Prev. (n.d.), 2019. (Accessed December 15 2022).
  • 40. Soliman NA, Tagnit Hamou A. Using particle packing and statis- tical approach to optimize eco-efficient ultra-high-performance concrete. ACI Mater J. 2017. https://doi.org/10.14359/51701001.
  • 41. Shi C, Zheng K. A review on the use of waste glasses in the production of cement and concrete. Resour Conserv Recycl. 2007;52(2):234–47. https://doi.org/10.1016/j.resconrec.2007.01. 013.
  • 42. ASTM, ASTM C1403–15 “Standard Test Method for Rate of Water Absorption of Masonry Mortars”. American Society for Testing and Materials. West Conshohocken, Pennsylvania, United States; 2022.
  • 43. Shi C, Wu Y, Riefler C, Wang H. Characteristics and pozzolanic reactivity of glass powders. Cem Concr Res. 2005;35(5):987–93. https://doi.org/10.1016/j.cemconres.2004.05.015.
  • 44. Urhan S. Alkali silica and pozzolanic reactions in concrete. Part 1: Interpretation of published results and an hypothesis concern- ing the mechanism. Cement Concrete Res. 1987;17(1):141–52. https://doi.org/10.1016/0008-8846(87)90068-8.
  • 45. Ye H, Radlińska A. Effect of alkalis on cementitious materials: Understanding the relationship between composition, struc- ture, and volume change mechanism. J Adv Concr Technol. 2017;15(4):165–77. https://doi.org/10.3151/jact.15.165.
  • 46. Shayan A, Xu A. Value-added utilisation of waste glass in con- crete. Cem Concr Res. 2004;34(1):81–9. https://doi.org/10.1016/ S0008-8846(03)00251-5.
  • 47. Abbas S, Nehdi M, Saleem M. Ultra-high performance concrete: mechanical performance, durability, sustainability and implemen- tation challenges. Int J Concrete Struct Mater. 2016;10:271–95. https://doi.org/10.1007/s40069-016-0157-4.
  • 48. Abellán-García J, Santofimio-Vargas MA, Torres-Castellanos N. Analysis of metakaolin as partial substitution of ordinary port- land cement in reactive powder concrete. Adv Civ Eng Mater. 2020;9(1):368–86. https://doi.org/10.1520/ACEM20190224.
  • 49. Abellán J, Fernández J, Torres N, Núñez A. Statistical optimi- zation of ultra-high-performance glass concrete. ACI Mater J. 2020;117(1):243–54. https://doi.org/10.14359/51720292.
  • 50. Abellan J, Torres N, Núñez A, Fernández J. Influencia del expo- nente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, IV Congr. Int. Ing. Civ., Havana, Cuba (2018) 215–220.
  • 51. Pyo S, Kim H-K. Fresh and hardened properties of ultra-high per- formance concrete incorporating coal bottom ash and slag powder. Constr Build Mater. 2017;131:459–66. https://doi.org/10.1016/j. conbuildmat.2016.10.109.
  • 52. Wang D, Shi C, Wu Z, Xiao J, Huang Z, Fang Z. A review on ultra high performance concrete: part II Hydration, microstructure and properties. Construct Build Mater. 2015;96:368–77. https://doi. org/10.1016/j.conbuildmat.2015.08.095.
  • 53. Abellán-García J. K-fold validation neural network approach for predicting the one-day compressive strength of UHPC. Adv Civ Eng Mater. 2021;10(1):223–43.
  • 54. Ghafari E, Costa H, Júlio E. RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers. Constr Build Mater. 2014;66:375–83. https:// doi.org/10.1016/j.conbuildmat.2014.05.064.
  • 55. ASTM, ASTM C109/C109M-20 “Standard Test Method for Com- pressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)”, American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States, 2020.
  • 56. Lee N, Koh K, Park S, Ryu G. Microstructural investigation of calcium aluminate cement-based ultra-high performance con- crete (UHPC) exposed to high temperatures. Cem Concr Res. 2017;102:109–18. https://doi.org/10.1016/j.cemconres.2017.09. 004.
  • 57. Abellan-Garcia J, Khan MI, Abbas YM, Castro-Cabeza A, Car- rillo J. Multi-criterion optimization of low-cost, self-compacted and eco-friendly micro-calcium-carbonate-and waste-glass-flour- based ultrahigh-performance concrete. Construct Build Mater. 2023;371:130793. https://doi.org/10.1016/j.conbuildmat.2023. 130793.
  • 58. Zingg A, Winnefeld F, Holzer L, Pakusch J, Becker S, Figi R, Gauckler L. Interaction of polycarboxylate-based superplasticizers with cements containing different C3A amounts. Cement Concr Compos. 2009;31(3):153–62. https:// doi. org/ 10. 1016/j. cemco ncomp.2009.01.005.
  • 59. Idir R, Cyr M, Tagnit-Hamou A. Use of waste glass in cement- based materials. Environ Ingénierie Dévelop. 2010. https://doi. org/10.4267/dechets-sciences-techniques.3132.
  • 60. Puertas F, Santos H, Palacios M, Martínez-Ramírez S. Polycar- boxylate superplasticiser admixtures: effect on hydration, micro- structure and rheological behaviour in cement pastes. Adv Cem Res. 2005;17(2):77–89. https:// doi. org/ 10. 1680/ adcr. 17.2. 77. 65044.
  • 61. Abellán García J, Fernandez Gomez J, Torres Castellanos N. Properties prediction of environmentally friendly ultra-high- performance concrete using artificial neural networks. Europ J Environ Civil Eng. 2022;26(6):2319–43.
  • 62. Abellán-García J, Ortega-Guzmán J, Chaparro-Ruiz D, García- Castaño E. A comparative study of LASSO and ANN regressions for the prediction of the direct tensile behavior of UHPFRC. Adv Civ Eng Mater. 2022;11(1):20210101.
  • 63. Nguyen N-H, Abellán-García J, Lee S, Garcia-Castano E, Vo TP. Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model. J Build Eng. 2022;52:104302. https://doi.org/10.1016/j.jobe.2022.104302.
  • 64. Hernández-Carrillo C, Torres-Rubio N, Sarmiento-Rojas J. Evaluation of specified and manufactured Colombian com- mercial cements by performance. J Phys Conf Ser IOP Pub. 2021;2046(1):012048.
  • 65. Abellán-García J. Four-layer perceptron approach for strength prediction of UHPC. Construct Build Mater. 2020;256:119465. https://doi.org/10.1016/j.conbuildmat.2020.119465.
  • 66. Abellán-García J. Study of nonlinear relationships between dosage mixture design and the compressive strength of UHPC. Case Stud Construct Mater. 2022;17:e01228.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ad26afc-a0ed-483d-a826-31c363bee7db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.