PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing the Reduction of Total Suspended Solids in Pump Water from Fish Factories Through Electrocoagulation using Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to optimize the removal of total suspended solids (TSS) in pump water from fish flour factories through electrocoagulation technology and to determine the effects of the main operation parameters. Pump water has high conductivity (40.1 mS), due to the presence of dissolved salts and contains high concentration of organic substances (12,360 mg/L of TSS and 520 mg/L of fats). In this study, pump water was treated in an electrocoagulation reactor with aluminum electrodes using Response Surface Methodology with a 3k factorial design based on two factors, current intensity (I) of 8-13 A and treatment time (t) of 20-40 minutes. The percentage of TSS removed from the water was used as the response variable. The results revealed that I and t significantly (p < 0.05) influenced the process. In accordance, the optimal operational parameters for TSS removal were I = 13 A and t = 30 minutes. Using these conditions, TSS removal efficiency of 99.9% was achieved. The sewage sludge generated with these optimal process conditions indicated 19.3% of ash content, 6.2% of salt, 1.7% of aluminum, 0.3% of iron, 0.4% of potassium, 256 ppm of zinc, and 2.1% of phosphorus. Hence, the results of this study affirm that electrocoagulation can be considered as a solution for marine pollution caused by fishing industries.
Rocznik
Strony
269--277
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Universidad de Lima, Instituto de Investigación Científica (IDIC), Av. Javier Prado Este 4600, Surco, Lima, Perú
  • Universidad de Lima, Instituto de Investigación Científica (IDIC), Av. Javier Prado Este 4600, Surco, Lima, Perú
  • Instituto Tecnológico de la Producción (DIDITT), Carretera a Ventanilla Km. 5, 6. Callao, Perú
  • Pesquera Diamante S.A., Amador Merino Reyna 307, Edificio Nacional, piso 12 y 13, San Isidro, Lima, Perú
Bibliografia
  • 1. Adhoum N., Monser L., Bellakhal N., Belgaied J.E. 2004. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. Journal of Hazardous Materials, 112(3), 207–213. https://doi.org/10.1016/j.jhazmat.2004.04.018
  • 2. Akansha J., Nidheesh P.V., Gopinath A., Anupama K.V., Suresh Kumar M. 2020. Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere, 253, 126652
  • 3. AlJaberi F.Y. 2019. Operating cost analysis of a concentric aluminum tubes electrodes electrocoagulation reactor, Heliyon, 5(8), e02307, https://doi.org/10.1016/j.heliyon.2019.e02307
  • 4. AlJabery F.Y., Ahmed S.A., Makki H.F. 2020. Electrocoagulation treatment of high saline oily wastewater: evaluation and optimization. Heliyon, 6(6), e03988. https://doi.org/10.1016/j.heliyon.2020.e03988
  • 5. Al-Qodah, Z.; Al-Shannag, M. 2018. On the Performance of Free Radicals Combined Electrocoagulation Treatment Processes. Separation Science and Technology, 48(2), 1–16. https://doi.org/10.1080/01496395.2017.1373677
  • 6. Azarian G., Rahmani A.R., Atashzaban Z., Nematollahi D. 2018. New batch electro-coagulation process for treatment and recovery of high organic load and low volume egg processing industry wastewater. Process Safety and Environmental Protection, 119, 96–103. https://doi.org/10.1016/j.psep.2018.07.025
  • 7. Basri M., Rahman R.N.Z.R.A., Ebrahimpour A., Salleh A.B., Gunawan E.R., Rahman M.B.A. 2007. Comparison of estimation capabilities of Response Surface Methodology (RSM) with artificial neural network (ANN) in lipase-catalyzed synthesis of palm-based wax ester. BMC Biotechnology, 7, 53. https://doi.org/10.1186/1472–6750–7–53
  • 8. Bayar S., Yıldız Y.Ş., Yılmaz A.E., İrdemez Ş. 2011. The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method. Desalination, 280(1–3), 103–107.
  • 9. Castañeda L.F., Coreño O., Nava José L., Carreño G. 2020. Removal of fluoride and hydrated silica from underground water by electrocoagulation in a flow channel reactor. Chemosphere, 244, 125417. https://doi.org/10.1016/j.chemosphere.2019.125417
  • 10. Ching Y.C., Redzwan G. 2017. Biological treatment of fish processing saline wastewater for reuse as liquid fertilizer. Sustainability, 9(7), 1062. https://doi.org/10.3390/su9071062
  • 11. Choi A.E.S., Futalan C.C.M., Yee J.J. 2020. Fuzzy optimization for the removal of uranium from mine 1 water using batch electrocoagulation: A case study. Nuclear Energy and Technology, 52(7), 1471–1480. https://doi.org/10.1016/j.net.2019.12.016
  • 12. Cristóvão R.O., Botelho C.M., Martins R.J., Loureiro J.M., Boaventura R.A.R. 2014. Primary treatment optimization of a fish canning wastewater from a Portuguese plant. Water Resources and Industry, 6, 51–63
  • 13. Deghles A., Kurt U. 2016. Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chemical Engineering and Processing: Process Intensification, 104, 43–50. https://doi.org/10.1016/j.cep.2016.02.009
  • 14. Deveci E.Ü., Akarsu C., Gönen Ç., Özay Y. 2019. Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective. Process. Biochemistry, 84, 124–133. https://doi.org/10.1016/j.procbio.2019.06.016
  • 15. Dil E.A., Ghaedi M., Asfaram A., Mehrabi F., Sadeghfar F. 2019. Efficient adsorption of Azure B onto CNTs/Zn:ZnO@Ni2P-NCs from aqueous solution in the presence of ultrasound wave based on multivariate optimization. Journal of Industrial and Engineering Chemistry, 74, 55–62. https://doi.org/10.1016/j.jiec.2018.12.050
  • 16. Elkacmi R., Boudouch O., Hasib A., Bouzaid M., Bennajah M. 2020. Photovoltaic electrocoagulation treatment of olive mill wastewater using an external-loop airlift reactor Sustainable Chemistry and Pharmacy 17, 100274. https://doi.org/10.1016/j.scp.2020.100274
  • 17. Espinoza Villegas M.I. 2016. Proposal for the addition of sludge recovered from pump water to improve fishmeal productivity at a Fishing Company. Universidad Nacional de Trujillo. http://dspace.unitru.edu.pe/bitstream/handle/UNITRU/7853/Tesis%20Maestr%c3%adaX%20-%20Manuel%20I.%20Espinoza%20Villegas.pdf?sequence=1&isAllowed=y
  • 18. Food and Agriculture Organization of the United Nations. 1986. Manuals of food quality control 8: Food analysis, quality, adulteration, and tests of identity. http://www.fao.org/3/W6530E/W6530E.pdf
  • 19. Holt P.K., Barton G.W., Wark M., Mitchell C.A. 2002. A quantitative comparison between chemical dosing and electrocoagulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211(2–3), 233–248. https://doi.org/10.1016/S0927–7757(02)00285–6
  • 20. Karichappan T., Venkatachalam S., Jeganathan P. M. 2014. Optimization of electrocoagulation process to treat grey wastewater in batch mode using Response Surface Methodology. Journal of Environmental Health Science and Engineering, 12(1), 29. https://doi.org/10.1186/2052–336X-12–29
  • 21. Khan S.U., Islam D.T., Farooqi I.H., Ayub S., Basheer F. 2019. Hexavalent chromium removal in an electrocoagulation column reactor: Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Safety and Environmental Protection, 122, 118–130. https://doi.org/10.1016/j.psep.2018.11.024
  • 22. Loza Pacheco R.B. 2014. Determination of the optimal dosage of coagulants and flocculants applied to a continuous system through flotation in the treatment of fishing effluents. Universidad Nacional de San Agustín. http://repositorio.unsa.edu.pe/bitstream/handle/UNSA/3989/IQloparb063.pdf?sequence=1&isAllowed=y
  • 23. Ministry of Environment. 2018. Executive Order No. 010–2018-MINAM. Perú. https://sinia.minam.gob.pe/normas/aprueban-limites-maximos-permisibles-efluentes-establecimientos.
  • 24. Mollah M., Morkovsky P., Gomes J., Kesmez M., Parga J. & Cocke D. 2004. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114, 199–210.https://doi.org/10.1016/j.jhazmat.2004.08.009
  • 25. Montero C., Maldonado A., Solorza-Feria O. 2007. Arsenic Removal from Underground Water by Electrocoagulation with Zinc, Brass, and Iron. ECS Transactions, 2(13), 71–85. https://doi.org/10.1149/1.2424301.
  • 26. Mores R., Mello P.D.A., Zakrzevski C.A., Treichel H., Kunz A., Steffens J., Dallago R.M. 2018. Reduction of soluble organic carbon and removal of total phosphorus and metals from swine wastewater by electrocoagulation. Brazilian Journal of Chemical Engineering, 35(4), 1231–1240. https://doi.org/10.1590/0104–6632.20180354s20170300
  • 27. Nariyan E., Sillanpää M., Wolkersdorfer C. 2017. Electrocoagulation treatment of mine water from the deepest working European metal mine – Performance, isotherm and kinetic studies. Separation and Purification Technology, 177, 363–373.
  • 28. Nawarkar C.J., Salkar V.D. 2019. Solar powered electrocoagulation system for municipal wastewater treatment. Fuel, 237, 222–226. https://doi.org/10.1016/j.fuel.2018.09.140
  • 29. Nidheesh P.V., Kumar A., Syam Babu D., Scaria J., Suresh Kumar M. 2020. Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation. Chemosphere, 251, 126437.
  • 30. Omil F., Méndez R., Lema J.M. 1996. Anaerobic treatment of seafood processing waste water in an industrial anaerobic pilot plant. Water S. Part A, 22, 173–181.
  • 31. Phalakornkule C., Mangmeemak J., Intrachod K., Nuntakumjorn B. 2010. Pretreatment of palm oil mill effluent by electrocoagulation and coagulation. ScienceAsia, 36(2), 142–149
  • 32. Priya M., Jeyanthi J. 2019. Removal of COD, oil and grease from automobile washwater effluent using electrocoagulation technique. Microchemical Journal, 150, 104070. https://doi.org/10.1016/j.microc.2019.104070
  • 33. Putra A.A., Watari T., Maki S., Hatamoto M., Yamaguchi T. 2020. Anaerobic baffled reactor to treat fishmeal wastewater with high organic content. Environmental Technology and Innovation 17, 100586. http://dx.doi.org/10.1016/j.eti.2019.100586
  • 34. Rodríguez C.T.C., Amaya-Chavez A., Roa-Morales G., Barrera-Díaz C.E., Ureña-Núñez F. 2010. An integrated electrocoagulation phytoremediation process for the treatment of mixed industrial wastewater. International Journal of Phytoremediation 12(8), 772–784.
  • 35. Saad H., Ammar Natheer N., Ismail Ali D., Ali Wisam M., Abbas. 2019. Electrocoagulation technique for refinery wastewater treatment in an internal loop split-plate airlift reactor. Journal of Environmental Chemical Engineering, 7(6), 103489. https://doi.org/10.1016/j.jece.103489
  • 36. Sefatjoo P., Alavi Moghaddam M.R.A., Mehrabadi A.R. 2020. Evaluating electrocoagulation pretreatment prior to reverse osmosis system for simultaneous scaling and colloidal fouling mitigation: Application of RSM in performance and cost optimization. Journal of Water Process Engineering, 35, 101201. https://doi.org/10.1016/j.jwpe.2020.101201
  • 37. Vitorello V.A., Capaldi F.R., Stefanuto V.A. 2005. Recent advances in aluminum toxicity and resistance in higher plants. Brazilian Journal of Plant Physiology, 17(1), 129–143.
  • 38. Xu C., Wang J., Yang T., Chen X., Liu X., Ding X. 2015. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using Response Surface Methodology. Carbohydrate Polymers, 121, 79–85. https://doi.org/10.1016/j.carbpol.2014.12.024
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ad268b2-a47f-4162-90ba-67ed197672b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.