PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D Spatial Interpolation Methods for Open-Pit Mining Air Quality with Data Acquired by Small UAV Based Monitoring System

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metody interpolacji przestrzennej 3D dla oceny jakości powietrza w kopalniach odkrywkowych z danymi uzyskanymi przez system monitorowania oparty na pospolitym bezzałogowym statku powietrznym BSP
Języki publikacji
EN
Abstrakty
EN
Open-pit mining activities, including blasting, drilling, loading, and transport, often result in the direct emission of particulates and gases into the atmosphere. Occupational exposure to these pollutants is considered as the risk for health, especially the risk of developing respiratory diseases. An air quality monitoring system and spatial analysis are necessary to identify these potential hazards. In this study, we propose an air quality monitoring system that integrates gas and dust sensors into a small multi-rotor copter or unmanned aerial vehicle (UAV). Different spatial interpolation methods including trilinear interpolation, nearest neighbour, and natural neighbour applied to the monitoring data (CO, SO2, PM2.5, CO2) from our system to derive air concentration levels in the atmosphere of open-pit coal mines were also examined. The results show that the UAV based air quality monitoring system performed efficiently and safely in conditions of deep open-pit coal mines. In addition, for the estimation of the concentration level of gases and dust in unsampled points, trilinear interpolation performed with the most accurate result, followed by natural neighbor and nearest neighbor.
PL
Wielorakie działalności ư górnictwie odkrywkowym, w tym roboty strzelnicze, wiertnicze, załadowania, transport, zwałowania itp. często prowadzi do bezpośredniej emisji pyłów i gazów do atmosfery. Zanieczyszczenie powietrza na terenie zakładu górniczego uważane jest za zagrożenie dla zdrowia pracowników i górników, zwłaszcza ryzyko rozwoju chorób układu oddechowego. Aby zidentyfikować te potencjalne zagrożenia, niezbędny jest system monitorowania jakości powietrza i analiza przestrzenna. W artykule, przedstawiono wyniki zastosowania system monitorowania jakości powietrza, który integruje czujniki gazu i pyłu w pospolitym wielowirnikowym helikopterze lub bezzałogowym statku powietrznym (BSP). Zbadano również różne metody interpolacji przestrzennej, w tym interpolację trójliniową, najbliższego sąsiada i naturalnego sąsiada, zastosowane do danych z monitoringu (CO, SO2, PM2.5, CO2) z badanego systemu w celu wyznaczenia poziomów stężenia powietrza w atmosferze kopalni odkrywkowych. Wyniki pokazują, że system monitorowania jakości powietrza oparty na BSP działał sprawnie i bezpiecznie w warunkach głębokich odkrywkowych kopalń węgla kamiennego. Dodatkowo, do oszacowania poziomu stężeń gazów i pyłów w niepróbkowanych punktach zastosowano interpolację trójliniową z najdokładniejszym wynikiem, a po kolei naturalny sąsiad i najbliższy sąsiad.
Rocznik
Strony
263--272
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., zdj.
Twórcy
  • Department of Mine Surveying, Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Department of Mine Surveying, Hanoi University of Mining and Geology, Hanoi, Vietnam
autor
  • Department of Mine Surveying, Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Department of Occupational Health and Safety, Hanoi University of Public Health, Hanoi, Vietnam
autor
  • Department of Water Resources Engineering, Thuyloi University, Hanoi, Vietnam
autor
  • Department of Surface Mining, Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Department of Surface Mining, Hanoi University of Mining and Geology, Hanoi, Vietnam
Bibliografia
  • 1. Alvarado, M., Gonzalez, F., Fletcher, A., & Doshi, A. (2015). Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites. Sensors (Basel, Switzerland), 15(8), 19667-19687. doi:10.3390/s150819667.
  • 2. Arregocés, H. A., Rojano, R., Angulo, L., & Restrepo, G. (2018). Intake Fraction of PM10 from Coal Mine Emissions in the North of Colombia. Journal of Environmental and Public Health, 2018, 8532463. doi:10.1155/2018/8532463.
  • 3. Bien, N. V. (2015). Research and recommendations on solutions for the improvement of productivity and reducing the prices of coal in Vinacomin (in Vietnamese).
  • 4. Bourke, P. (1999). Interpolation methods. Miscellaneous: projection, modelling, rendering, 1, 10.
  • 5. Bui, D. T., Long, N. Q., Bui, X.-N., Nguyen, V.-N., Van Pham, C., Van Le, C., . . . Kristoffersen, B. (2017). Lightweight Unmanned Aerial Vehicle and Structure-from-Motion Photogrammetry for Generating Digital Surface Model for Open-Pit Coal Mine Area and Its Accuracy Assessment. Paper presented at the International Conference on Geo-Spatial Technologies and Earth Resources.
  • 6. Bui, X.-N., Choi, Y., Atrushkevich, V., Nguyen, H., Tran, Q.-H., Long, N. Q., & Hoang, H.-T. (2020). Prediction of Blast-Induced Ground Vibration Intensity in Open-Pit Mines Using Unmanned Aerial Vehicle and a Novel Intelligence System. Natural Resources Research, 29(2), 771-790. doi:10.1007/s11053-019-09573-7
  • 7. Cam Q. T. Thanh, N. T. H. (2017). Trilinear Interpolation Algorithm for Reconstruction of 3D MRI Brain Image. American Journal of Signal Processing, 7(1), 11.
  • 8. Chang, C.-C., Chang, C.-Y., Wang, J.-L., Pan, X.-X., Chen, Y.-C., & Ho, Y.-J. (2020). An optimized multicopter UAV sounding technique (MUST) for probing comprehensive atmospheric variables. Chemosphere, 254, 126867. doi:https://doi.org/10.1016/j.chemosphere.2020.126867.
  • 9. Chen, D., Feng, Q., Liang, H., Gao, B., & Alam, E. (2019). Distribution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in underground coal mining environment of Xuzhou. Human and Ecological Risk Assessment: An International Journal, 25(6), 1564-1578. doi:10.1080/10807039.2018.1489715.
  • 10. Dieu Hien, V. T., Lin, C., Thanh, V. C., Kim Oanh, N. T., Thanh, B. X., Weng, C.-E., . . . Rene, E. R. (2019). An overview of the development of vertical sampling technologies for ambient volatile organic compounds (VOCs). Journal of Environmental Management, 247, 401-412. doi:https://doi.org/10.1016/j.jenvman. 2019.06.090.
  • 11. Espitia-Pérez, L., Arteaga - Pertuz, M., Soto, J. S., Espitia-Pérez, P., Salcedo-Arteaga, S., Pastor–Sierra, K., . . . Henriques, J. A. P. (2018). Geospatial analysis of residential proximity to open-pit coal mining areas in relation to micronuclei frequency, particulate matter concentration, and elemental enrichment factors. Chemosphere, 206, 203-216. doi:https://doi.org/10.1016/j.chemosphere.2018.04.049.
  • 12. Gautam, S., Patra, A. K., Sahu, S. P., & Hitch, M. (2018). Particulate matter pollution in opencast coal mining areas: a threat to human health and environment. International Journal of Mining, Reclamation and Environment, 32(2), 75-92. doi:10.1080/17480930.2016.1218110.
  • 13. Goutham Priya M, J. S. (2018). Evaluation of Interpolation Techniques for Air Quality Monitoring using Statistical Error Metrics: A Review. INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT), 6(7).
  • 14. Grozdanovic, M., Bijelić, B., & Marjanovic, D. (2018). Impact assessment of risk parameters of underground coal mining on the environment. Human and Ecological Risk Assessment: An International Journal, 24(4), 1003-1015. doi:10.1080/10807039.2017.1405339.
  • 15. Hendryx, M., Islam, M. S., Dong, G.-H., & Paul, G. (2020). Air Pollution Emissions 2008–2018 from Australian Coal Mining: Implications for Public and Occupational Health. International Journal of Environmental Research and Public Health, 17(5). doi:10.3390/ijerph17051570.
  • 16. Hulme, M., Conway, D., Jones, P. D., Jiang, T., Barrow, E. M., & Turney, C. (1995). Construction of a 1961–1990 European climatology for climate change modelling and impact applications. International Journal of Climatology, 15(12), 1333-1363. doi:10.1002/joc.3370151204.
  • 17. Jha, D., M.Sabesan, Das, A., Vinithkumar, N. V., & Kirubagaran, R. (2011). Evaluation of Interpolation Technique for Air Quality Parameters in Port Blair, India. Universal Journal of Environmental Research and Technology 2249-0256, 1, 301-310.
  • 18. Kurtzman, D., & Kadmon, R. (1999). Mapping of temperature variables in Israel: a comparison of different interpolation methods. Climate Research, 13, 33-43. doi:10.3354/cr013033.
  • 19. Lam, N. S.-N. (1983). Spatial Interpolation Methods: A Review. The American Cartographer, 10(2), 22.
  • 20. Le, C. V., Cao, C.Xuan, Le, V.Hong & Dinh, T. (2020). Volume computation of quarries in Vietnam based on Unmanned Aerial Vehicle (UAV) data. Journal of Mining and Earth Sciences, 61(1), 10. doi:https://doi.org/10.46326/JMES.2020.61(1).03.
  • 21. León-Mejía, G., Espitia-Pérez, L., Hoyos-Giraldo, L. S., Da Silva, J., Hartmann, A., Henriques, J. A. P., & Quintana, M. (2011). Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Science of the Total Environment, 409(4), 686-691. doi:10.1016/j.scitotenv.2010.10.049.
  • 22. Liu, C., Huang, J., Wang, Y., Tao, X., Hu, C., Deng, L., . . . Xiao, W. (2020). Vertical distribution of PM2.5 and interactions with the atmospheric boundary layer during the development stage of a heavy haze pollution event. Science of the Total Environment, 704, 135329. doi:https://doi.org/10.1016/j.scitotenv.2019.135329.
  • 23. Long, J., Tan, D., Deng, S., & Lei, M. (2018). Pollution and ecological risk assessment of antimony and other heavy metals in soils from the world's largest antimony mine area, China. Human and Ecological Risk Assessment: An International Journal, 24(3), 679-690. doi:10.1080/10807039.2017.1396531.
  • 24. Long, N. Q., Nam, B. X., Cuong, C. X., & Canh, L. V. (2019). An approach of mapping quarries in Vietnam using low-cost Unmanned Aerial Vehicles. 11(2), 199-210. doi: 10.21177/1998-4502-2019-11-2-199-210.
  • 25. Nalder, I. A., & Wein, R. W. (1998). Spatial interpolation of climatic Normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 92(4), 211-225. doi:10.1016/S0168-1923(98)00102-6.
  • 26. Nghia, N. V. (2020). "Building DEM for deep open-pit coal mines using DJI Inspire 2. Journal of Mining and Earth Sciences, 61(1), 1-10. doi:10.46326/JMES.2020.61(1).01.
  • 27. Padró, J.-C., Carabassa, V., Balagué, J., Brotons, L., Alcañiz, J. M., & Pons, X. (2019). Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Science of the Total Environment, 657, 1602-1614. doi:https://doi.org/10.1016/j.scitotenv.2018.12.156.
  • 28. Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research, 5(1), 79-86. doi:https://doi.org/10.5094/APR.2014.010.
  • 29. Petsonk, E. L., Rose, C., & Cohen, R. (2013). Coal mine dust lung disease. New lessons from old exposure. American journal of respiratory and critical care medicine, 187(11), 1178-1185. doi:10.1164/rccm.201301-0042CI.
  • 30. Quanfu Fan, A. E., Vladlen Koltun, Shankar Krishnan, Suresh Venkatasubramanian. (2005, Jan 22 2005 → Jan 22 2005). Hardware-assisted natural neighbor interpolation. Paper presented at the the Seventh Workshop on Algorithm Engineering and Experiments and the Second Workshop on Analytic Algorithms and Combinatorics, Vancouver, BC, Canada.
  • 31. Raeva, P. L., Filipova, S. L., & Filipov, D. G. (2016). Volume Computation of a Stockpile - a Study Case Comparing GPS and Uav Measurements in AN Open Pit Quarry. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41B1, 999. Retrieved from https://ui.adsabs.harvard.edu/abs/2016ISPAr41B1..999R.
  • 32. Rohi, G., Ejofodomi, O. t., & Ofualagba, G. (2020). Autonomous monitoring, analysis, and countering of air pollution using environmental drones. Heliyon, 6(1), e03252. doi:https://doi.org/10.1016/j.heliyon.2020.e03252
  • 33. Sheng, Q., Zhang, Y., Zhu, Z., Li, W., Xu, J., & Tang, R. (2019). An experimental study to quantify road greenbelts and their association with PM2.5 concentration along city main roads in Nanjing, China. Science of the Total Environment, 667, 710-717. doi:https://doi.org/10.1016/j.scitotenv.2019.02.306.
  • 34. Sibson, R. (1981). A brief description of natural neighbor interpolation. Computer Science, 15.
  • 35. Villa, T. F., Salimi, F., Morton, K., Morawska, L., & Gonzalez, F. (2016). Development and Validation of a UAV Based System for Air Pollution Measurements. Sensors, 16(12). doi:10.3390/s16122202.
  • 36. Yang, J.-H., Jung, J., Ryu, J.-H., & Yoh, J. J. (2020). Real-time monitoring of toxic components from fine dust air pollutant samples by utilizing spark-induced plasma spectroscopy. Chemosphere, 257, 127237. doi:https://doi.org/10.1016/j.chemosphere.2020.127237.
  • 37. Zhang, X., Bai, X., Li, C., Li, T., Wang, R., Zhao, Z., & Norback, D. (2020). Elemental composition of ambient air particles in Taiyuan, China: evaluation of lifetime cancer and non-cancer risks. Human and Ecological Risk Assessment: An International Journal, 26(5), 1391-1406. doi:10.1080/10807039.2019.1579048.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ad029e2-4e0f-4be5-8058-07d374293029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.