PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the contribution of dedicated gravity satellite missions to the modelling of the Earth gravity field ‒ A case study of Ethiopia and Uganda in East Africa

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Udział grawimetrycznych misji satelitarnych w modelowaniu ziemskiego pola siły ciężkości – badanie dla obszaru Etiopii i Ugandy w Afryce Wschodniej
Języki publikacji
EN
Abstrakty
EN
Since the first decade of this millennium, the three dedicated gravity satellite missions (DGSMs): CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer) had remarkably contributed to the modelling of the Earth’s gravity field and its temporal variations. Moreover, in 22 May 2018, the GRACE-FO (GRACE Follow-On) has been launched to continue the measurements of GRACE satellite mission. On the basis of data from those DGSMs, Global Geopotential Models (GGMs) are continuously developed. The main aim of this research is to evaluate the recent GGMs and assess the contribution of DGSMs to the modelling of the Earth’s gravity field over East Africa. Gravity functionals, e.g. quasigeoid height and gravity disturbance, obtained from recent GGMs developed with the use of data from DGSMs were evaluated using terrestrial gravity data available in Ethiopia and GNSS/levelling data in Uganda. The results obtained were analysed and discussed. The main findings reveal an improvement of ca. 40–50% on the modelled gravity field from GGMs that include data from GOCE satellite mission.
PL
Od pierwszej dekady obecnego tysiąclecia do poprawy modelowania pola siły ciężkości Ziemi oraz jego zmian w czasie przyczyniły się ogromnie trzy grawimetryczne misje satelitarne: CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) oraz GOCE (Gravity field and steady-state Ocean Circulation Explorer). Ponadto w maju 2018 roku zostały wystrzelone satelity misji GRACE-FO (GRACE Follow-On) kontynuującej dostarczanie danych pomiarowych otrzymywanych z misji GRACE. Na podstawie tych danych są stale opracowywane globalne modele geopotencjału. Głównym celem podjętych w niniejszej pracy badań jest ocena wygenerowanych w ostatnich kilku latach globalnych modeli geopotencjału oraz oszacowanie wpływu grawimetrycznych misji satelitarnych na modelowanie pola siły ciężkości Ziemi dla obszaru Etiopii i Ugandy w Afryce Wschodniej. Z globalnych modeli geopotencjału opracowanych na podstawie danych z grawimetrycznych misji satelitarnych, wyznaczono funkcjonały pola siły ciężkości, tj. zakłócenie grawimetryczne i wysokość quasigeoidy, a następnie porównano je z dostępnymi lotniczymi/naziemnymi danymi grawimetrycznymi dla obszaru Etiopii oraz danymi satelitarno-niwelacyjnymi dla obszaru Ugandy. Uzyskane wyniki poddano analizie i dyskusji. Zaobserwowano poprawę dokładności modelowanego ziemskiego pola siły ciężkości o ok. 40–50% w przypadku wykorzystania globalnych modeli geopotencjału opracowanych z użyciem danych z misji satelitarnej GOCE.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679, Warsaw, Poland, Tel.: +48 22 3291903, Fax: +48 22 3291950, ORCID: https://orcid.org/0000-0002-5616-0770
  • Addis Ababa University, Addis Ababa Institute of Technology, School of Civil and Environmental Engineering, Addis Ababa, Ethiopia, Tel.: +251924271277; Entoto Observatory and Research Centre, Ethiopian Space Science and Technology Institute, Addis Ababa, Ethiopia, ORCID: https://orcid.org/0000-0001-6708-6505
  • Entoto Observatory and Research Centre, Ethiopian Space Science and Technology Institute, Addis Ababa, Ethiopia; Geospatial Information Institute, Addis Ababa, Ethiopia, Tel.: +2511-15515901, Fax: +2511-15515189, ORCID: https://orcid.org/0000-0003-0168-8786
Bibliografia
  • [1] Abd-Elmotaal H.A., (2009): Evaluation of the EGM2008 geopotential model for Egypt, Newton's Bulletin, No. 4, pp. 185–199.
  • [2] Abd-Elmotaal H.A., (2015): Validation of GOCE models in Africa, Newton’s Bull., Vol. 5, pp. 149–16.
  • [3] Abd-Elmotaal H.A., Makhloof A., (2013): Comparison of Recent Geopotential Models for the Recovery of the Gravity Field in Egypt, Geodetic Week, Essen, Germany, 8–10 October.
  • [4] Abeho D.R., Hipkin R., Tulu B.B., (2014): Evaluation of EGM08 by means of GPS levelling Uganda, South African Journal of Geomatics, Vol. 3, No 3, pp. 272–284.
  • [5] Bedada T.B., (2010): An Absolute Geopotential Height System for Ethiopia, PhD Theiss, University of Edinburgh.
  • [6] Benahmed D.S.A., (2009): Evaluation of the Earth Gravity Model EGM2008 in Algeria, Newton's Bulletin, No. 4, pp. 172–184.
  • [7] Bekele B., (2013): Hybrid model of GOCO03S satellite only and EGM2008, validation in case study of hageremariam to yabelo gps/leveling, MSc. Thesis, Addia Ababa University.
  • [8] Bomfim E.P., Braitenberg C., Molina E.C., (2013): Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil, Geophys. J. Int., Vol. 195, No 2, pp. 870–882, DOI: 10.1093/gji/ggt283.
  • [9] Brockmann J.M., Zehentner N., Höck E., Pail R., Loth I., Mayer-Gürr T., Schuh W.-D., (2014): EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission, Geophys. Res. Lett., Vol. 41, No 22, pp. 8089–8099.
  • [10] Bruinsma S.L., Förste C., Abrikosov O., Marty J.-C., Rio M.-H., Mulet S., Bonvalot S., (2013): The new ESA satellite-only gravity field model via the direct approach, Geophys. Res. Lett., Vol. 40, No 14, pp. 3607–3612.
  • [11] Dawod G.M., Mohamed H.F., Ismail S.S., (2010): Evaluation and adaptation of the EGM2008 geopotential model along the Northern Nile Valley, Egypt: case study, J. Surv. Eng., Vol. 136, No 1, pp. 36–40, DOI: 10.1061/(ASCE)SU.1943-5428.0000002.
  • [12] Derese B., (2013): Validation of the 2008 Earth Gravity Model using GPS and Leveling data - A case study in Addis Ababa and western part of Ethiopia, MSc. Thesis, Addia Ababa University.
  • [13] Elsaka B., Alothman A., Godah W., (2016): On the contribution of GOCE satellite-based GGMs to improve GNSS/leveling geoid heights determination in Saudi Arabia, IEEE J. Sel. Top. Appl. Earth Observ., Vol. 9, No 12, pp. 5842–5850, DOI: 10.1109/JSTARS.2015.2495193.
  • [14] Floberghagen R., Fehringer M., Lamarre D., Muzi D., et al., (2011): Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission, Journal of Geodesy, Vol. 85, No 11, pp. 749–758, DOI: 10.1007/s00190-011-0498-3.
  • [15] Förste Ch., Bruinsma S.L., Abrikosov O., Lemoine J-M., Marty J.Ch., Flechtner F., Balmino G., Barthelmes F., Biancale R., (2014): EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services, DOI: 10.5880/ICGEM.2015.1.
  • [16] Gatti A., Reguzzoni M., Migliaccio F., Sansò F., (2016): Computation and assessment of the fifth release of the GOCE-only space-wise solution, The 1st Joint Commission 2 and IGFS Meeting, 19‒23 September 2016, Thessaloníki, Greece.
  • [17] Geremew Z., (2017): Evaluation of Gravity Field Models: EIGEN-6C4, and GOCO03S combined with EGM08 using GNSS-Levelling, MSc. Thesis, Adama Science and Technology University.
  • [18] Gilardoni M., Reguzzoni M., Sampietro D., (2016): GECO: a global gravity model by locally combining GOCE data and EGM2008, Studia Geophys. Geod., Vol. 60, pp. 228‒247, DOI: 10.1007/s11200-015-1114-4.
  • [19] Godah W., Krynski J., Szelachowska M., (2018): The use of absolute gravity data for the validation of global geopotential models and for improving quasigeoid heights determined from satellite-only global geopotential models, J Appl. Geophys., Vol. 152, pp. 38–47, DOI: 10.1016/j.jappgeo.2018.03.002.
  • [20] Gomez M.E., Perdomo R., Del Cogliano D., (2017): Validation of recent geopotential models in Tierra Del Fuego, Acta Geophys., Vol. 65, No 5, pp. 931–943, DOI: 10.1007/s11600-017-0085-y.
  • [21] Heiskanen W.A., Moritz H., (1967): Physical geodesy, Freeman, San Francisco.
  • [22] Hirt C., Gruber T., Featherstone W.E., (2011): Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights, Journal of Geodesy, Vol. 85, No 10, pp. 723–740, DOI: 10.1007/s00190-011-0482-y.
  • [23] Krynski J., Kloch G., (2009): Evaluation of the performance of the new EGM08 global geopotential model over Poland, Geoinformation Issues, Vol. 1, No 1, pp. 7–17.
  • [24] Liang W., Xu X., Li J., Zhu G., (2018): The determination of an ultra high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data, Acta Geodaetica et Cartographica Sinica, Vol. 47, No 4, pp. 425–434. DOI:10.11947/j.AGCS.2018.20170269.
  • [25] Lu B., Luo Z., Zhong B., Zhou H., Flechtner F., Förste C., Barthelmes F., Zhou R., (2018): The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor, Journal of Geodesy, Vol. 92, No 5, pp. 561–572.
  • [26] Marchenko A.N., Marchenko D.A., Lopushansky A.N., (2016): Gravity Field Models Derived from the Second Degree Radial Derivatives of the GOCE Mission: A Case Study, Annals of Geophysics, Vol. 59, No 6, pp. 649‒659, DOI: 10.4401/ag-7049.
  • [27] Merry C.L., (2009): EGM2008 Evaluation for Africa, Newton's Bulletin, No. 4, pp. 200–206.
  • [28] Newton’s Bulletin, (2009): External quality evaluation reports of EGM08, Newton’s Bulletin Issue n 4, International Association of Geodesy and International Gravity Field Service, ISSN 1810-8555.
  • [29] Newton’s Bulletin, (2015): Assessment of GOCE geopotential models, Newton’s Bulletin Issue n 5, International Association of Geodesy and International Gravity Field Service, ISSN 1810-8555.
  • [30] Odera P.A., (2019): Assessment of the latest generation GOCE-based global gravity field models using height and free-air gravity anomalies over South Africa, Arabian Journal of Geosciences, Vol. 12(5), No 145, https://doi.org/10.1007/s12517-019-4337-9.
  • [31] Olesen A.V., Forsberg R., (2007): The Ethiopian 2006 airborne gravity survey, data acquisition and processing report, Danish National Space Center DNSC.
  • [32] Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K., (2012): The development and evaluation of the earth gravitational model 2008 (EGM2008), J. Geophys. Res., Vol. 117, No B04406, pp. 1–38.
  • [33] Reigber C., Lühr H., Schwintzer P., (2002): CHAMP mission status, Adv. Space Res., Vol. 30, No 2, pp. 129–134, DOI: 10.1016/S0273-1177(02)00276-4.
  • [34] Sprlák M., Gerlac C., Pettersen B., (2012): Validation of GOCE global gravity field models using terrestrial gravity data in Norway, J. Geodetic Sci., Vol. 2, No 2, pp. 134–143.
  • [35] Tapley B.D., Bettadpur S., Ries J.C., Thompson P.F., et al., (2004): GRACE measurements of mass variability in the Earth system, Science, Vol. 305, No 5683, pp. 503–505, DOI:10.1126/science. 1099192.
  • [36] Torge W., Müller J., (2012): Geodesy, 4th edition, Walter de Gruyter, Berlin-Boston.
  • [37] Voigt C., Denker H., (2014): Regional validation and combination of GOCE gravity field models and terrestrial data, pp. 139–145, In: F. Flechtner, N. Sneeuw, W.-D. Schuh (Eds), Observation of the System Earth from Space – CHAMP, GRACE, GOCE and future missions, GEOTECHNOLOGIEN Science Report No 20, Advanced Technologies in Earth Sciences, Springer, Berlin, (XV, 230 p).
  • [38] Worku E., (2013): Validation of the 2008 earth gravity model using GPS/leveling data – a case study around Debre Birhan, MSc. Thesis, Adama Science and Technology University.
  • [39] Wu H., Müller J., Brieden, P. (2016): The IfE global gravity field model from GOCE-only observations, The 1st Joint Commission 2 and IGFS Meeting, 19‒23 September 2016, Thessaloníki, Greece.
  • [40] Xu X., Zhao Y., Reubelt T., Robert T., (2017): A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models, Geodesy and Geodynamics, Vol. 8, No 4, pp. 260‒272.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ace2c98-0e16-4f4b-b387-33459c6353eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.