PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of nanowires and nanoparticles of copper on the structure and properties of the nanocomposite polymeric materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main aim of this paper is to investigate the impact of nano-reinforcements in the form of Cu nanowires and Cu nanopowder on the structure and properties of polymeric composite materials Design/methodology/approach: Developed in this paper of nanocomposite materials reinforced with Cu nanopowders and Cu nanowires they have shown the ability to carry an electrical charge, which was confirmed by testing resistivity and resistance to electrical breakdown Findings: Research surface area of reinforce the material showed that the copperdimensional nanowires an attractive material for the strengthening of polymeric composite materials. Because of their shape and dimensions, the formation of percolation paths necessary for electrical charge in the insulating matrix, are a better material reinforcement of copper nanopowder Research limitations/implications: The phenomenon of current conduction through the polymer composite materials is an important property due to the use of these materials Originality/value: The paper presents the effect of the addition of one-dimensional nanowires of copper into the insulating matrix epoxy resin allowing electrical conductivity produced in this way, polymeric materials nanocomposites
Rocznik
Strony
18--29
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] G. Borkow, J. Gabbay, Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections, Current Chemical Biology 3 (2009) 272-278.
  • [2] J. Konieczny, Materials used in the construction of the Air Force, Army 4 (2013) 68-75 (in Polish).
  • [3] L.A. Dobrzański, M. Bilewicz, J.C. Viana, Polymer nanocomposites reinforced with montmorillonite, Archives of Materials Science and Engineering 53/1 (2012) 5-28.
  • [4] L.A. Dobrzański, Basics of design methodology material, Wyd. Pol. Śl., Gliwice 2009 (in Polish).
  • [5] J.W. Gardner, P.N. Bartlett, Application of conducting polymer technology in microsystem, Sensors and Actuators A 51 (1995) 57-66.
  • [6] L. Nicole, et al., Hybrid materials science: a promised land for the integrative design of multifunctional materials, Nanoscale 6 (2014) 6267-6292
  • [7] H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, Q. Fu, Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials, Progress in Polymer Science 39/4 (2014) 627-655.
  • [8] D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer 49 (2008) 3187-3204.
  • [9] G. Zhang, Q. Yu, W. Wang, X. Li, Nanostructures for Thermoelectric Applications: Synthesis, Growth Mechanism, and Property Studies, Advanced Materials 22 (2010) 1959-1962.
  • [10] C. Bai, M. Liu, Implantation of nanomaterials and nanostructures on surface and their applications, Nano Today 7 (2012) 258-281.
  • [11] M. Bilewicz, K. Labisz, T. Ta ski, et al. Structural identification of polymer nano-composites, Acta Physica Polonica A 126/4 (2014) 895-901.
  • [12] R.V. Kurahatti, A.O. Surendranathan, S.A. Kori, N. Singh, A.V. Ramesh Kumar, S. Srivastava, Defence applications of polymer nanocomposites, Defence Science Journal 60/5 (2010) 551-563.
  • [13] T. Köhler, S. Mietke, J. Ilgner, M. Werner, Nanotechnology - Markets & Trends, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005, 51-56.
  • [14] B. Bhushan, Springer Handbook of Nanotechnology, Springer, Berlin Heidelberg, 2010, 119-169.
  • [15] L. Peponib, D. Pugliaa, L. Torrea, L. Valentinia, J.M. Kenny, Processing of nanostructured polymers and advanced polymeric based nanocomposites, Materials Science and Engineering: R: Reports 85 (2014) 1-46.
  • [16] P. Rana, R.P. Chauhan, Size and irradiation effects on the structural and electrical properties of copper nanowires, Physica B 451 (2014) 26-33.
  • [17] A.D. Dobrzańska-Danikiewicz, Foresight methods for technology validation, road mapping and development in the surface engineering area, Archives of Materials Science and Engineering 44/2 (2010) 69-86.
  • [18] A.D. Dobrzańska-Danikiewicz, Materials Surface engineering development trends, Open Access 6 (2011).
  • [19] A. Dobrzańska-Danikiewicz, The methodology of computer-integrated forecasting the development of surface engineering of materials, Open Access Library 1/7 (2012) ( in Polish).
  • [20] PN-EN 62631-1:2011E Dielectric properties of solid insulating materials - Part 1: General (in Polish).
  • [21] IEC 60243-1 Tests for thermoplastic materials used in the electrical and electronic industries.
  • [22] PN-EN ISO 3252 Powder metallurgy - Vocabulary (in Polish)
  • [23] J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer 44 (2003) 5893-5899
  • [24] C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M.-K. Schwarz, W. Bauhofer, K. Schulte, A.H. Windle, Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites, Composites Science and Technology 64 (2004) 2309-2316.
  • [25] S. Mohammadzadeh, D. Pouladsaz, et al., Electronic transport properties in copper nanowire, Microelectronic Engineering 85 (2008) 1992-1994
  • [26] G.C. Psarras, Hopping conductivity in polymer matrixmetal particles composites, Composites: Part A 37 (2006) 1545-1553
  • [27] Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, European Polymer Journal 38 (2002) 1887-1897
  • [28] R. Pilawka, S. Paszkiewicz, Z. Ros"aniec, Epoxy composites with carbon nanotubes, Advances in Manufacturing Science and Technology 36/3 (2012) 67-79.
  • [29] M.R. Loosa, L.A. Ferreira Coelho, S.H. Pezzin, S.C. Amico, Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices, Materials Research 11/3 (2008) 347-352.
  • [30] S.G. Prolongo , M. Campo, M.R. et al., Thermophysical characterisation of epoxy resin reinforced by aminofunctionalized carbon nanofibers, Composites Science and Technology 69 (2009) 349-357.
  • [31] W. Zhang, R.S. Blackburna, A.A. Dehghani-Sanij, Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites, Scripta Materialia 56 (2007) 581-584.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5acd2f41-a3da-4172-a84d-fe7f3e888e24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.