PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of co-disposal of sludge based on TTF-type precalciner on NOx emissions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To reduce the emission of nitrogen oxides (NOx) during the co-disposal of sludge in a TTF-type precalciner, an optimized co-disposal process of a TTF-type precalciner has been implemented in a cement plant in Hebei. The model was built using ANSYS FLUENT software. The effects of three single-factor perspectives (sludge input ratio, gas flow rate, and tertiary air temperature on NO concentration) were investigated. The response surface method of Box–Behnken design was used. When the sludge ratio increased from 0 to 25%, the NO concentration at the outlet was 122–297 mg/m3. Meanwhile, it increased from 192 mg/ m3 to 241 mg/ m3 since the airflow increased from 95 m3/s to 122 m3/s. The maximum NO concentration was 192 mg/ m3 when the tertiary air temperature was 1170 K. The inter-action between airflow and sludge ratio was more significant than any other interaction between other conditions (P < 0.05). Finally, the optimum conditions were a sludge ratio of 5%, airflow 109 m3/s, and tertiary air temperature 1280 K. NO concentration was 166.9 mg/m3 under this condition.
Rocznik
Strony
53--68
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
  • College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
autor
  • College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
autor
  • College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
  • National Joint Local Engineering Research Center for Volatile Organic Compounds and Odorous Pollution Control, Shijiazhuang 050018, China
autor
  • College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Bibliografia
  • [1] TANG Z., FANG P., XIAO X., HUANG J., CHEN X., ZHONG P., TANG Z., CEN C., Data on species and concentration of the main gaseous products during sludge combustion to support the feasibility of using sludge as a flue gas denitration agent for the cement industry, Data Brief, 2019, 25, 103998. DOI: 10.1016/j.dib.2019.103998.
  • [2] LIANG Y., XU D., FENG P., HAO B., GUO Y., WANG S., Municipal sewage sludge incineration and its air pollution control, J. Clean. Prod., 2021, 295 (3), 126456. DOI: 10.1016/j.jclepro.2021.126456.
  • [3] LIAO Y.F., MA X.Q., Thermogravimetric analysis of the co-combustion of coal and paper mill sludge, Appl. En., 2010, 87 (11), 3526–3532. DOI: 10.1016/j.apenergy.2010.05.008.
  • [4] TREZZA M.A., SCIAN A.N., Waste fuels. Their effect on Portland cement clinker, Cem. Concr. Res., 2005, 35 (3), 438–444. DOI: 10.1016/j.cemconres.2004.05.045.
  • [5] CHEN H., YAN S.H., YE Z.L., MENG H.J., ZHU Y.G., Utilization of urban sewage sludge: Chinese perspectives, Environ. Sci. Poll. Res., 2012, 19 (5), 1454–1463. DOI: 10.1007/s11356-012-0760-0.
  • [6] YANG Y., ZHANG Y., LI S., LIU R., DUAN E., Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization, Chemosphere, 2020, 258, 127420. DOI: 10.1016/j.chemosphere.2020.127420.
  • [7] HOUSHFAR E., LØVÅS T., SKREIBERG Ø., Experimental investigation on NOx reduction by primary measures in biomass combustion. Straw, peat, sewage sludge, forest residues and wood pellets, Energ., 2012, 5 (2), 270–290. DOI: 10.3390/en5020270.
  • [8] SHIMIZU T., TOYONO M., OHSAWA H., Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a bubbling fluidized bed combustor, Fuel, 2007, 86 (7–8), 957–964. DOI: 10.1016/j.fuel.2006.10.001.
  • [9] XIAO X., LUO J., HUANG H., XU Z., WU H., HUANG J., FANG P., Study on the influencing factors of removal of NOx from cement kiln flue gas by sewage sludge as a denitration agent, Environ. Sci. Poll. Res. Int., 2020, 27 (33), 41342–41349. DOI: 10.1007/s11356-020-10126-2.
  • [10] LV D., ZHU T., LIU R., LV Q., SUN Y., WANG H., LIU Y., ZHANG F., Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions, Chemosphere, 2016, 159, 95–601. DOI: 10.1016/j.chemosphere.2016.06.062.
  • [11] FANG P., TANG Z., XIAO X., HUANG J., CHEN X., ZHONG P., TANG Z., CEN C., Using sewage sludge as a flue gas denitration agent for the cement industry: Factor assessment and feasibility, J. Clean. Prod., 2019, 224, 292–303. DOI: 10.1016/j.jclepro.2019.03.175.
  • [12] XIAO X., FANG P., HUANG J.-H., TANG Z.-J., CHEN X.-B., WU H.-W., CEN C.-P., TANG Z.-X., Mechanistic study on NO reduction by sludge reburning in a pilot scale cement precalciner with different CO2 concentrations, RSC Adv., 2019, 9 (40), 22863–22874. DOI: 10.1039/D0RA90006K.
  • [13] WANG W., LIAO Y., LIU J., HUANG Z., TIAN M., Numerical simulation and optimization of staged combustion and nox release characteristics in precalciner, J. Therm. Sci., 2019, 28 (5), 1024–1034. DOI: 10.1007/s11630-019-1164-y.
  • [14] SU S., XIANG J., SUN L., ZHANG Z., SUN X., ZHENG C., Numerical simulation of nitric oxide destruction by gaseous fuel reburning in a single-burner furnace, Proc. Combust. Inst., 2007, 31 (2), 2795–2803. DOI: 10.1016/J.PROCI.2006.07.260.
  • [15] YIN C., YAN J., Oxy-fuel combustion of pulverized fuels. Combustion fundamentals and modeling, Appl. En., 2016, 162, 742–762. DOI: 10.1016/j.apenergy.2015.10.149.
  • [16] FIDAROS D.K., BAXEVANOU C.A., DRITSELIS C.D., VLACHOS N.S., Numerical modelling of flow and transport processes in a calciner for cement production, Powder Technol., 2007, 171 (2), 81–95. DOI: 10.1016/j.powtec.2006.09.011.
  • [17] BAUM M.M., STREET P.J., Predicting the combustion behaviour of coal particles, Comb. Sci. Technol., 1971, 3 (5), 231–243. DOI: 10.1080/00102207108952290.
  • [18] FIELD M.A., Rate of combustion of size-graded fractions of char from a low-rank coal between 1200 K and 2000 K, Comb. Flame, 1969, 13 (3), 237–252. DOI: 10.1016/0010-2180 (69)90002-9.
  • [19] CHOI C.R., KIM C.N., Numerical investigation on the flow, combustion and NOx emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler, Fuel, 2009, 88 (9), 1720–1731. DOI: 10.1016 /j.fuel.2009.04.001.
  • [20] GHENAI C., INAYAT A., SHANABLEH A., AL-SARAIRAH E., JANAJREH I., Combustion and emissions analysis of Spent Pot lining (SPL) as alternative fuel in cement industry, Sci. Total. Environ., 2019, 684, 519–526. DOI: 10.1016/j.scitotenv.2019.05.157.
  • [21] NAKHAEI M., WU H., GRÉVAIN D., JENSEN L.S., GLARBORG P., DAM-OHANSEN K., CPFD simulation of petcoke and SRF co-firing in a full-scale cement calciner, Fuel Process. Technol., 2019, 196. DOI: 10.1016/j.fuproc.2019.106153.
  • [22] HU Z., MA X., CHEN Y., LIAO Y., WU J., YU Z., LI S., YIN L., XU Q., Co-combustion of coal with printing and dyeing sludge: Numerical simulation of the process and related NOx emissions, Fuel, 2015, 139, 606–613. DOI: 10.1016/j.fuel.2014.09.047.
  • [23] ZHANG J., TIAN Y., ZHU J., ZUO W., YIN L., Characterization of nitrogen transformation during microwave-induced pyrolysis of sewage sludge, J. Anal. Appl. Pyrol., 2014, 105, 335–341. DOI: 10.1016 j.jaap.2013.11.021.
  • [24] LI X., ZENG L., LIU H., DU H., YANG X., HAN H., LIU W., ZHANG S., SONG M., CHEN Z., LI Z., Numerical simulation study on the influences of the secondary-tertiary air proportion on the airflow mixing effects and pulverized coal combustion characteristics in a 300-MW down-fired boiler, Proc. Saf. Environ. Prot., 2019, 130, 326–343. DOI: 10.1016/j.psep.2019.08.022.
  • [25] ESTRADA-VAZQUEZ C., SALINAS-PACHECO A., PERALTA-REYES E., POGGI-VARALDO H.M., REGALADO- -MENDEZ A., Parametric optimization of domestic wastewater treatment in an activated sludge sequencing batch reactor using response surface methodology, J. Environ. Sci. Health, A, Tox. Hazard. Subst. Environ. Eng., 2019, 54 (12), 1197–1205. DOI: 10.1080/10934529.2019.1631087.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ac88a6b-d929-432a-8ed9-1775f43fdfc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.