PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electron-transfer complexation of morpholine donor molecule with some π – acceptors: Synthesis and spectroscopic characterizations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Morpholine is an interesting moiety that used widely in several organic syntheses. The intermolecular charge-transfer (CT) complexity associated between morpholine (Morp) donor with (monoiodobromide “IBr”, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone “DDQ”, 2,6-dichloroquinone-4-chloroimide “DCQ” and 2,6-dibromoquinone-4-chloroimide “DBQ”) π–acceptors have been spectrophotometrically investigated in CHCl3 and/or MeOH solvents. The structures of the intermolecular charge-transfer (CT) were elucidated by spectroscopic methods like, infrared spectroscopy. Also, different analyses techniques such as UV-Vis and elemental analyses were performed to characterize the four morpholine [(Morp)(IBr)], [(Morp)(DDQ)], [(Morp)(DCQ)] and [(Morp)(DBQ)] CT-complexes which reveals that the stoichiometry of the reactions is 1:1. The modified Benesi-Hildebrand equation was utilized to determine the physical spectroscopic parameters such as association constant (K) and the molar extinction coefficient (ε).
Rocznik
Strony
82--88
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
  • Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
  • Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
  • Department of Chemistry, Faculty of Science, Bisha University, Bisha 61922, Saudi Arabia
  • Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, 21974, Taif, Saudi Arabia
  • Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egyp
  • Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egyp
  • Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
  • Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
  • Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, 12622-Dokki, Cairo, Egypt
  • Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
Bibliografia
  • 1. Behmadi H. Moghaddam Z.A. Poormorteza N. Beyramabadi S.A. & Nezhad M.A.A. (2017). A four Components One-Pot Synthesis of New Imidazole Molecular Tweezers Based on 246-Triarylpyridine as Hinge Region. Iran. J. Chem. Chem. Eng. (IJCCE) 36(1) 11–17.
  • 2. Weigelt J. Itani K. Stevens D. Lau W. Dryden M. Knirsch C. & Group L.C.S. (2005). Linezolid versus Vancomycin in Treatment of Complicated Skin and Soft Tissue Infections. Antimicrob. Agents. Chemother. 49(6) 2260–2266. DOI: 10.1128/AAC.49.6.2260-2266.2005.
  • 3. McKeage K. (2015). Finafloxacin: First Global Approval. Drugs 75(6), 687–693. DOI://doi.org/10.1007/s40265-015-0384-z.
  • 4. Mizuno M. Tanaka J. & Harada I. (1981). Electronic spectra and structures of polyiodide chain complexes. J. Phys. Chem. 85, 1789–1794. https://doi.org/10.1021/j150613a006.
  • 5. Nour E.M. Chen L.H. & Laane J. (1986). Resonance Raman and far-infrared studies of charge-transfer complexes of iodine. J. Raman Spectrosc. 17. 467–469. https://doi.org/10.1002/jrs.1250170608.
  • 6. Nour E.M. Chen L.H. & Laane J. (1986). Far-infrared and Raman spectroscopic studies of polyiodides. J. Phys. Chem. 90, 2841–2846. https://doi.org/10.1021/j100404a014.
  • 7. Mulazzi E. Pollini I. Piseri L. & Tubino R. (1981). Selective resonant Raman enhancement in polyiodide chains. Phys. Rev. (B) 24, 3555–3563. DOI: https://doi.org/10.1103/PhysRevB.24.3555.
  • 8. Nour E.M. (2000). Resonance Raman study of the polyiodide complex formed in the reaction of iodine with the polysulphur cyclic base 147101316-hexathiacyclooctadecane. Spectrochim. Acta. 56A 167–170. https://doi.org/10.1016/S1386-1425(99)00130-4.
  • 9. Nour E.M. & Shahada L.A. (1988). Electronic spectral studies and solvent effects on the reaction of iodine with 14811-tetraazacyclotetradecane. Spectrochim. Acta. 44A 1277–1280. https://doi.org/10.1016/0584-8539(88)80169-7.
  • 10. Singh N. Khan I.M. Ahmad A. & Javed S. (2014). Preparation spectral investigation and spectrophotometric studies of proton transfer complex of 22′-bipyridine with 35-dinitrobenzoic acid in various polar solvents. J. Mol. Struct. 1065–1066 74–85. https://doi.org/10.1016/j.molstruc.2014.02.017.
  • 11. Khan I.M. Shakya S. & Singh N. (2018). Preparation single-crystal investigation and spectrophotometric studies of proton transfer complex of 26-diaminopyridine with oxalic acid in various polar solvents. J. Mol. Liq. 250, 150–161. https://doi.org/10.1016/j.molliq.2017.11.150.
  • 12. Khan I.M. Alam K. Alam M.J. & Ahmad M. (2019). Spectrophotometric and photocatalytic studies of H-bonded charge transfer complex of oxalic acid with imidazole: single crystal XRD experimental and DFT/TD-DFT studies New J. Chem. 43 9039–9051. DOI:10.1039/C9NJ00332K.
  • 13. Khan I.M. & Shakya S. (2019). Exploring Colorimetric Real-Time Sensing Behavior of a Newly Designed CT Complex toward Nitrobenzene and Co2+: Spectrophotometric DFT/TD-DFT and Mechanistic Insights. ACS Omega 4 9983–9995. https://doi.org/10.1021/acsomega.9b01314.
  • 14. Singh N. Khan I.M. Ahmad A. & Javed S. (2016). Synthesis spectrophotometric and thermodynamic studies of charge transfer complex of 56-dimethylbenzimidazole with chloranilic acid at various temperatures in acetonitrile and methanol solvents. J. Mol. Liq. 221 1111−1120. https://doi.org/10.1016/j.molliq.2016.06.081.
  • 15. Almalki A.S.A. Alhadhrami A. Adam A.M.A. Grabchev I. Almeataq M. Al-Humaidi J.Y. Sharshar T. & Refat M.S. (2018). Preparation of elastic polymer slices have the semiconductors properties for use in solar cells as a source of new and renewable energy. J. Photochem. Photobiol. A 361 76–85. https://doi.org/10.1016/j.jphotochem.2018.05.001.
  • 16. Almalki A.S.A. Alhadhrami A. Obaid R.J. Alsharif M.A. Adam A.M.A. Grabchev I. & Refat M.S. (2018). Preparation of some compounds and study their thermal stability for use in dye sensitized solar cells. J. Mol. Liq. 261 565–582. https://doi.org/10.1016/j.molliq.2018.04.057.
  • 17. Datta A.S. Bagchi S. Chakrabortty A. & Lahiri S.C. (2015). Studies on the weak interactions and CT complex formations between chloranilic acid 23-dichloro-56-dicyano-p-benzoquinone tetracyanoethylene and papaverine in acetonitrile and their thermodynamic properties theoretically spectrophotometrically aided by FTIR. Spectrochim. Acta A 146, 119–128. https://doi.org/10.1016/j.saa.2015.02.064.
  • 18. Saravanabhavan M. Sathya K. Puranik V.G. & Sekar M. (2014). Synthesis spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies. Spectrochim. Acta A 118 399–406. https://doi.org/10.1016/j.saa.2013.08.115.
  • 19. Mohamed M.E. Frag E.Y.Z. Hathoot A.A. & Shalaby E.A. (2018). Spectrophotometric determination of fenoprofen calcium drug in pure and pharmaceutical preparations. Spectroscopic characterization of the charge transfer solid complexes. Spectrochim. Acta A 189, 357–365. https://doi.org/10.1016/j.saa.2017.08.027.
  • 20. Shehab O.R. AlRabi ah H. Abdel-Aziz H.A. & Mostafa G.A.E. (2018). Charge-transfer complexes of cefpodoxime proxetil with chloranilic acid and 23-dichloro-56-dicyano-14-benzoquinone: Experimental and theoretical studies. J. Mol. Liq. 257, 42–51. https://doi.org/10.1016/j.molliq.2018.02.083.
  • 21. Soltani S. Magri P. Rogalski M. & Kadri M. (2019). Charge-transfer complexes of hypoglycemic sulfonamide with π-acceptors: Experimental and DFT-TDDFT studies. J. Mol. Struct. 1175, 105–116. https://doi.org/10.1016/j.molstruc.2018.07.074.
  • 22. Fathima K.S. Sathiyendran M. & Anitha K. (2019). Structure elucidation biological evaluation and molecular docking studies of 3-aminoquinolinium 2-carboxy benzoate-A proton transferred molecular complex. J. Mol. Struct. 1176 238–248. https://doi.org/10.1016/j.molstruc.2018.08.020.
  • 23. Man L. Li T. Wu X. Lu K. Yang L. Liu X. Yang Z. Zhou J. & Ni C. (2019). Synthesis crystal structure vibrational spectra nonlinear optical property of an organic charge-transfer compound―4-nitrobenzyl isoquinolinium picrate based on DFT calculations. J. Mol. Struct. 1175 971–978. https://doi.org/10.1016/j.molstruc.2018.07.054.
  • 24. Refat M.S. Adam A.M.A. Saad H.A. Naglah A.M. & Al-Omar M.A. (2015). transfer-Charge Complexation and Photostability Characteristics of Iodine with bis-18-naphthalimide as a Photosensitive Biologically Active Units in Solution and in the Solid State: Linear Correlation of Photostability and Dissociation Energy. Int. J. Electrochem. Sci. 10 6405–6421.
  • 25. Refat M.S. Elfalaky A. Elesh E. Naglah A.M. & Al-Omar M.A. (2015). Electrical Properties on Charge Transfer Complex of Norfloxacin Drug with Iodine Acceptor. Int. J. Electrochem. Sci. 10 6433–6443.
  • 26. Naglah A.M. Al-Omar M.A. Adam A.M.A. & Refat M.S. (2015). Charge-transfer Complexes Formed between the Sweeteners Saccharin Drug and Acido Acceptors: Structural Thermal and Morphological Features. Int. J. Pharmacology 11(8) 929–937. DOI: 10.3923/ijp.2015.929.937.
  • 27. Refat M.S. Saad H.A. Eldaroti H.H. Adam A.M.A. Al-Omar M.A. & Naglah A.M. (2016). Charge-transfer interactions between nitrogen moieties as a basis for different drugs with a picric acid acceptor. ScienceAsia 42(6), 397–406. doi: 10.2306/scienceasia1513-1874.2016.42.397.
  • 28. Naglah A.M. Al-Omar M.A. Ibrahim O.B. Refat M.S. Adam A.M.A. Saad H.A. & El-Metwaly N.M. (2016). Charge-transfer complexes of two highly efficient drugs with σ- and π-acceptors: Spectroscopic thermal and surface morphology characteristics. Russ. J. Gen. Chem. 86(4), 965–974. https://doi.org/10.1134/S1070363216040356.
  • 29. Almalki A.S.A. Naglah A.M. Refat M.S. Hegab M.S. Adam A.M.A. & Al-Omar M.A. (2017). Liquid and solid-state study of antioxidant quercetin donor and TCNE acceptor interaction: Focusing on solvent affect on the morphological properties. J. Mol. Liq. 233, 292–302. https://doi.org/10.1016/j.molliq.2017.03.033.
  • 30. Arora S. Kothiyal N.C. Kumar R. Shahab S. Al-Wasidi A.S. Al-Jafshar N.M. Al-Otifi J.S. Naglah A.M. Refat M.S. Alghamdi M.T. & Adam A.M.A. (2018). Experimental and Theoretical Studies of Charge Transfer Complex Formed Between the Antibiotic Drug Norfloxacin with Picric Acid: Density Functional Theory Approach. J. Biobased Materials and Bioenergy 12(2), 203–210. https://doi.org/10.1166/jbmb.2018.1761.
  • 31. Skoog D.A. (1985). Principle of Instrumetal Analysis 3rd edn. Ch. 7 Saunders College Publishing New York USA.
  • 32. Harada I. Tanaka J. & Zuno M.M. (1981). Electronic spectra and structures of polyiodide chain complexes. J. Phys. Chem. 85 1789–1794. https://doi.org/10.1021/j150613a006.
  • 33. Lever A.B.P. (1985). Inorganic Electronic Spectroscopy 2nd ed. Elsevier Amsterdam p. 161.
  • 34. Tsubomura H. & Lang R.P. (1961). Molecular Complexes and Their Spectra. XIII. Complexes of Iodine with Amides Diethyl Sulfide and Diethyl Disulfide. J. Am. Chem. Soc. 83 2085–2092. https://doi.org/10.1021/ja01470a013.
  • 35. McConnel, H.M., Ham, J.J. & Platt, J.R. (1964). Regularities in the Spectra of Molecular Complexes. J. Chem. Phys., 21, 66–70. https://doi.org/10.1063/1.1698626.
  • 36. Aloisi G.G. & Pignataro S. (1973). Molecular complexes of substituted thiophens with σand π acceptors. Charge transfer spectra and ionization potentials of the donors. J. Chem. Soc. Faraday Trans. 69 534–539. DOI:10.1039/F19736900534.
  • 37. Foster R. (1969). Organic Charge Transfer Complexes Academic Press London.
  • 38. Wheat D.C. (1969–1970). Hand Book of Chemistry and Physics 50th ed.
  • 39. Bellamy L.J. (1975). The infrared Spectra of Complex Molecules Chapman & Hall London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ac81fef-1208-47cc-8264-341934f2ed33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.