Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ballast water is a significant vector for the transport and introduction of aquatic organisms, microorganisms and chemical pollutants which impacts on ecosystems worldwide. In the study, ballast water from short- and long- range vessels with treatment systems was microbiologically evaluated in spring (April 20th) and summer (July 19th) and compared with waters of the main Police Seaport in the Odra River Estuary, southern Baltic Sea. All collected samples were evaluated for their physicochemical properties by standard methods. The number of individual groups of microorganisms was determined using the indirect culture method, according to the technique of inoculation of serial dilutions of samples of the examined waters. The results showed differences in the microorganisms in analysed samples. The phylogenetic analysis of bacteria recorded from the ballast water of short-range ships in spring showed the presence of six species of the genus Bordetella, while in summer four species of the genus Clostridium. In the ballast water of long-range ships, proteolytic bacteria pre-dominated in spring and halophilic bacteria in summer. In the summer period, eight species of bacteria were recorded, of which six belonged to the genus Clostridium. The ballast water treatment processes used on ships influence the composition of bacterial communities through selective recolonisation of water, which may transform bacterial functions as an important element of the marine food web. On the other hand, the presence of pathogenic bacterial species in the tested samples indicates improvement necessity of ballast water treatment systems used on vessels.
Wydawca
Czasopismo
Rocznik
Tom
Strony
48--58
Opis fizyczny
Bibliogr. 52 poz., tab., wykr.
Twórcy
autor
- Westpomeranian University of Technology in Szczecin, Department of Commodity, Quality Assessment, Process Engineering and Human Nutrition, Kazimierza Królewicza 4 St., 71-550 Szczecin, Poland
- Westpomeranian University of Technology in Szczecin, Department of Bioengineering, Laboratory of Microbiology and Environmental Biochemistry, Słowackiego 17 St., 71-434 Szczecin, Poland
autor
- Westpomeranian University of Technology in Szczecin, Department of Bioengineering, Laboratory of Microbiology and Environmental Biochemistry, Słowackiego 17 St., 71-434 Szczecin, Poland
autor
- Westpomeranian University of Technology in Szczecin, Department of Bioengineering, Laboratory of General Chemistry and Environmental Analysis, Szczecin, Poland
autor
- Westpomeranian University of Technology in Szczecin, Department of Commodity, Quality Assessment, Process Engineering and Human Nutrition, Kazimierza Królewicza 4 St., 71-550 Szczecin, Poland
Bibliografia
- ALTUG G., GURUN S., CARDAK M., CIFTCI P.S., KALKAN S. 2012. The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Marine Environmental Research. Vol. 81 p. 35–42. DOI 10.1016/j.marenvres.2012.08.005.
- BIANCHI M., PERFETTINI J., BIANCHI A. 1992. Marine heterotrophic bacteria associated with enrichment culture of nitrifying bacteria planned for closed aquaculture systems. Aquatic Living Resources. Vol. 5 p. 137–144. DOI 10.1051/alr:1992014.
- BŁASZCZYK M. 2010. Mikrobiologia środowisk [Environmental microbiology]. Warszawa. Wydaw. Nauk. PWN. ISBN 978-83-01-16319-8 pp. 392.
- BURBIANKA M., PLISZKA A., BURZYŃSKA H. 1983. Mikrobiologia żywności [Food microbiology]. Ed. 5th. Warszawa. PZWL pp. 539.
- BURKHOLDER J., HALLEGRAEFF G., MELIA G., COHEN A., BOWERS H., OLDACH D., ..., MALLING M. 2007. Phytoplankton and bacterial assemblages in ballast water of US military ships as a function of port of origin, voyage time, and ocean exchange practices. Harmful Algae. Vol. 6(4) p. 486–518. DOI 10.1016/j.hal.2006.11.006.
- BUTRÓN A., ORIVE E., MADARIAGA I. 2011. Potential risk of harmful alga transport by ballast waters: The case of Bilbao Harbour. Marine Pollution Bulletin. Vol. 62 p. 747–757. DOI 10.1016/j.marpol-bul.2011.01.008.
- BUZOLEVA L., LETYAGINA A., ZVYAGINCEV A., KASHIN I. 2012. Study of microorganisms coming into the port of Vladivostok with ballast water of ships. Russian Journal of Biological Invasions. Vol. 3(2) p. 92–100. DOI 10.1134/S207511171202004X.
- DAVID M., GOLLASCH S. 2018. How to approach ballast water management in European seas. Estuarine, Coastal and Shelf Science. Vol. 201 p. 248–255. DOI 10.1016/j.ecss.2016.10.018.
- DELACROIX S., VOGELSANG C., TOBIESEN A., LILTVED H. 2013. Disinfection by-products and ecotoxicity of ballast water after oxidative treatment – results and experiences from seven years of full-scale testing of ballast water management systems. Marine Pollution Bulletin. Vol. 73 p. 24–36 DOI 10.1016/j.marpolbul.2013.06.014.
- DI BELLA S., ASCENZI P., SIARAKAS S., PETROSILLO N., DI MASI A. 2016. Clostridium difficile toxins A and B: Insights into pathogenic properties and extraintestinal effects. Toxins (Basel). Vol. 8 (5), 134. DOI 10.3390/toxins8050134.
- DOBARADARAN S., SOLEIMANI F., NABIPOUR I., SAEEDI R., MOHAMMADI M.J. 2018. Heavy metal levels of ballast waters in commercial ships entering Bushehr port along the Persian Gulf. Marine Pollution Bulletin. Vol. 126 p. 74–76. DOI 10.1016/j.marpolbul.2017.10.094.
- DOBBS F. 2008. Ship ballast tanks: How microbes travel the world. Microbiology Today. Vol. 35(2) p. 78–81.
- FENG Y., ZHANG L., FANG Z., ZHU Y., ZHANG K. 2011. Investigation of microbe taken by ballast water of entry ships in Qinhuangdao port [online]. Environmental Science Survey. Vol. 30(2) p. 58–61. [Access 24.04.2020]. Available at: http://caod.oriprobe.com/articles/26730911/Investigation_of_Microbe_Taken_by_Ballast_-Water_of_Entry_Ships_in_Qinh.htm
- GOLLASCH S. 2006. Overview on introduced aquatic species in European navigational and adjacent waters. Helgoland Marine Research. Vol. 60 p. 84–89. DOI 10.1007/s10152-006-0022y.
- GOLLASCH S., DAVID M. 2019. Ballast water: Problems and management. Chapt. 13. In: World seas: An environmental evaluation. Vol. 3: Ecological issues and environmental impacts. Eds. C. Sheppard. 2nd ed. p. 237–250. DOI 10.1016/B978-0-12-805052-1.00014-0.
- HESHAM A., QI R., YANG M. 2011. Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis. Journal of Environmental Sciences. Vol. 23(12) p. 2049–2054. DOI 10.1016/S1001-0742(10)60647-X.
- HESS-ERGA O., MORENO-ANDRÉS J., ENGER Ø., VADSTEIN O. 2019. Microorganisms in ballastwater: Disinfection, community dynamics, and implications for management. Science of the Total Environment. Vol. 657 p. 704–716. DOI 10.1016/j.scitotenv.2018.12.004.
- HUANG D., HAACK R.A., ZHANG R. 2011. Does global warming increase establishment rates of invasive alien species? A centurial time series analysis. PLOS One. Vol. 6(9) p. 247–333. DOI 10.1371/journal.pone.0024733.
- IMO 2013. International convention for the control and management of ships’ ballast water and sediments, 2004. Guidance on ballast water sampling and analysis for trial use in accordance with the BWM convention and guidelines (G2), BWM.2/Circ.42 [online]. London. International Maritime Organization pp. 29. [Access 24.04.2020]. Available at: https://www.liscr.com/download/file/fid/3810
- International convention for the control and management of ship water and sediments from 16th February 2004 [online]. [Access 24.04.2020]. Available at: http://library.arcticportal.org/1913/1/International%20Convention%20for%20the%20Control%20and%20Management%20of%20Ships%27%20Ballast%20Water%20and%20Sediments.pdf
- KATSANEVAKIS S., WALLENTINUS I., ZENETOS A., LEPPÄKOSKI E., ÇINAR M.E., OZTÜRK B., GRABOWSKI M., GOLANI D., CARDOSO A.C. 2014. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquatic Invasions. Vol. 9(4) p. 391–423. DOI 10.3391/ai.2014.9.4.01.
- KIU R., HALL L. 2018. An update on the human and animal enteric pathogen Clostridium perfringens. Emerging Microbes and Infections. Vol. 7, 141. DOI 10.1038/s41426-018-0144-8.
- KOEHLER T. 2009. Bacillus anthracis. Physiology and genetics. Molecular Aspects of Medicine. Vol. 30(6) p. 386–396. DOI 10.1016/j.mam.2009.07.004.
- LIGENZA P., TOKARCZYK T., ADYNKIEWICZ-PIRAGAS M. (eds.) 2021. Przebieg i skutki wybranych powodzi w dorzeczu Odry od XIX wieku do czasów współczesnych [The course and effects of selected floods in the Odra basin from the nineteenth century to the present day] [online]. Warszawa. IMGW–PIB. ISBN 978-83-64979-45-3 pp. 132. [Access 24.04.2020]. Available at: https://www.imgw.pl/sites/default/files/2021-11/imgw-pib-monografia-2021-przebieg-i-skutki-wybranych-powodzi-w-dorzeczu-odry-calosc.pdf
- LOGAN N., DE VOS P. 2015. Bacillus. In: Bergey’s manual of systematics of archaea and bacteria. Ed. W.W. Whitman. John Wiley & Sons pp. 164. DOI 10.1002/9781118960608.gbm00530.
- LYMPEROPOULOU D., DOBBS F. 2017. Bacterial diversity in ships’ ballast water, ballast-water exchange, and implications for ship-mediated dispersal of microorganisms. Environmental Science and Technology. Vol. 51 p. 1962−1972. DOI 10.1021/acs.est.6b03108.
- MILUCH A., BAKIEROWSKA A., BEDNARZ M., BURSZTYNOWICZ M., BYKOWSZCZENKO N., CHAŁUPIŃSKA J., ..., ZŁOCZOWSKA I. 2017. Stan środowiska w województwie zachodniopomorskim. Raport 2017 [The state of the environment in the West Pomeranian Voivodeship. Report 2017]. Szczecin. WIOŚ w Szczecinie pp. 245.
- MOONEY H. 2001. Invasive alien species – The nature of the problem. In: Assessment and management of alien species that threaten ecosystems, habitat and species. Montreal, Canada. Secretariat of the Convention on Biological Diversity p. 1–3.
- MRAZEK J., STROSOVA L., FLIEGEROVA K., KOTT T., KOPECNY J. 2008. Diversity of insect intestinal microflora. Folia Microbiologica. Vol. 53 (3) p. 229–233. DOI 10.1007/s12223-008-0032-z.
- MUYZER G., DE WAAL E.C., U ITTERLINDEN A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied Environmental Microbiology. Vol. 59(3) p. 695–700. DOI 10.1128/aem.59.3.695-700.1993.
- NG C., LE T., GOH S., LIANG L., KIM Y., ROSE J., YEW-HONG K. 2015. A comparison of microbial water quality and diversity for ballast and tropical harbor waters. PLOS One. Vol. 10(11) p. 123–143. DOI 10.1371/journal.pone.0143123.
- NORMANT-SAREMBA M., MARSZEWSKA L., KERCKHOF F. 2017. First rekord of the North American amphipod Melita nitida Smith, 1873 in Polish coastal waters. Oceanological and Hydrobiological Studies. Vol. 46 (1) p. 108–115. DOI 10.1515/ohs-2017-0011.
- OJAVEER H., JAANUS A., MACKENZIE B., MARTIN G., OLENIN S., RADZIEJEWSKA T., TELESH I., ZETTLER M., ZAIKO A. 2010. Status of biodiversity in the Baltic Sea. PLOS One. Vol. 5(9) p. 124–167. DOI 10.1371/journal.pone.0012467.
- OJAVEER H., OLENIN S., NARŠČIUS A., FLORIN A.B., EZHOVA E., GOLLASCH S., ..., STRĀKE S. 2016. Dynamics of biological invasions and pathways overtime: A case study of a temperate coastal sea. Biological Invasions. Vol. 19 p. 799–813. DOI 10.1007/s10530-016-1316-x.
- PN-EN ISO 6222:2004. Jakość wody – Oznaczanie ilościowe mikroorganizmów zdolnych do wzrostu – Określanie ogólnej liczby kolonii metodą posiewu na agarze odżywczym [Water quality – Enumeration of growthable microorganisms – Determination of the total number of colonies by plating on nutrient agar]. Warszawa. PKN pp. 7.
- PN-EN ISO 6878:2006. Jakość wody – Oznaczanie fosforu – Metoda spektrometryczna z molibdenianem amonu [Water quality – Determination of phosphorus – Ammonium molybdate spectrometric method]. Warszawa. PKN pp. 25.
- PN-EN ISO 10304-1:2009. Water quality – Determination of dissolved anions by liquid chromatography of ions – Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate. Warszawa. PKN pp. 18.
- PN-ISO 6059:1999. Jakość wody – Oznaczanie sumarycznej zawartości wapnia i magnezu – Metoda miareczkowa z EDTA [Water quality – Determination of the total content of calcium and magnesium – Titration method]. Warszawa. PKN pp. 8.
- PN-ISO 7150-1:2002. Jakość wody – Oznaczanie azotu amonowego – Część 1: Manualna metoda spektrometryczna [Determination of ammoniacal nitrogen – Part 1: Manual spectrometric method]. Warszawa. PKN pp. 12.
- POULAIN B., POPOFF M. 2019. Why are botulinum neurotoxin-producing bacteria so diverse and botulinum neurotoxins so toxic? Toxins. Vol. 11(1), 34. DOI 10.3390/toxins11010034.
- ROJAS-TIRADO P., PEDERSEN P., VADSTEIN O., PEDERSEN L. 2019. Microbial dynamics in RAS water: Effects of adding acetate as a biodegradable carbon-source. Aquacultural Engineering. Vol. 84 p. 106–116. DOI 10.1016/j.aquaeng.2018.12.010.
- SEEBENS H., GASTNER M., BLASIUS B. 2013. The risk of marine bioinvasion caused by global shipping. Ecology Letters. Vol. 16(6) p. 782–790. DOI 10.1111/ele.12111.
- SHAH A., LIU Z., SALHI E., HÖFER T., WERSCHKUND B., VON GUNTEN U. 2015. Formation of disinfection by-products during ballast water treatment with ozone, chlorine and peracetic acid: Influence of water quality parameters. Environmental Science: Water Research & Technology. Vol. 1 p. 465–480. DOI 10.1039/C5EW00061K.
- SHAH N., MOSKA M., NOVIKV A., PERRY M., HIRST M., CAROFF M., FERNANDEZ R. 2013. Draft genome sequences of Bordatella hinzii and Bordetella trematum. Genome Announcements. Vol. 1(5) p. 838–913. DOI 10.1128/genomeA.00838-13.
- SMITH R., BAKER R., COLLINS D., KORYCINSKA A., MALUMPHY C., OSTOJÁ-STARZEWSKI J., ..., REID S. 2018. Recent trends in non-native, invertebrate, plant pest establishments in Great Britain, accounting for time lags in reporting. Agricultural and Forest Entomology. Vol. 20(4) p. 496–504. DOI 10.1111/afe.12282.
- SOKAL R., ROHLF F. 2012. Biometry: The principles and practice of statistics in biological research. 4th ed. New York. Freeman. ISBN 0716786044 pp. 937.
- SOLEIMANI F., DOBARADARAN S., TAHERKHANI R., SAEEDI R., MOHAMMADI M., KESHTKAR M., GHADERI M., MIRAHMADI R. 2017a. Assessment of microbial and physiochemical quality of ballast water in commercial ships entering Bushehr port, along the Persian Gulf. Desalination and Water Treatment. Vol. 98 p. 190–195. DOI 10.5004/dwt.2017.21786.
- SOLEIMANI F., DOBARADARAN S., MAHYI A., PARHIZKAR G., GHADERI M., KESHTKAR M., KARBASDEHIA V. 2017b. Fluoride and chloride levels in ballast water in commercial ships entering Bushehr port on the Persian Gulf [online]. Fluoride. Vol. 50(1 Pt 2) p. 121–126. [Access 24.04.2020]. Available at: https://www.fluorideresearch. org/501Pt2/files/FJ2017_v50_n1Pt2_p121-126_sfs.pdf
- SOLEIMANI F., TAHERKHANI R., DOBARADARAN S., S PITZ J., SAEEDI R. 2021. Molecular detection of E. coli and Vibrio cholerae in ballast water of commercial ships: A primary study along the Persian Gulf. Journal of Environmental Health Science and Engineering. Vol. 19 p. 457–463. DOI 10.1007/s40201-021-00618-9.
- SZCZEPAŃSKI W., JAROSIŃSKI W., DUDEK R., IWANIAK M., MORYC E., MUSIOŁ J., PNIAK G., SOKOŁOWSKA E., WAJDA B. 2010. Stan czystości rzek na podstawie wyników badań wykonywanych w ramach państwowego monitoringu środowiska w latach 2007–2009 [The cleanliness of rivers on the basis of the results of tests carried out as part of the State Environmental Monitoring in 2007–2009]. Biblioteka Monitoringu Środowiska. Warszawa. IOŚ. ISBN 978-83-61102-44-1 pp. 209.
- TAKAHASHI C., LOURENÇO N., LOPES T., RALL V., LOPES C. 2008. Ballast water: A review of the impact on the world public health. Journal of Venomous Animals and Toxins including Tropical Diseases. Vol. 14(3) p. 393–408. DOI 10.1590/S1678-91992008000300002.
- TOMARU A., KAWACHI M., DEMURA M., FUKUYO Y. 2014. Changes in microbial communities, including both uncultured and culturable bacteria, with mid-ocean ballast-water exchange Turing a voyage from Japan to Australia. PLOS One. Vol. 9(5) p. 962–974. DOI 10.1371/journal.pone.0096274.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ac721b1-0825-4377-8055-31a3fca43c97