PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Contaminants Removal from Real Refinery Wastewater Associated with Energy Generation in Microbial Fuel Cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microbial fuel cells (MFCs) pertain to a kind of modern technology for the direct conversion of chemical energy in organic matter from wastewaters into electricity during the oxidation of organic substrates. A system of continuous MFC was constructed for the treatment of real petroleum refinery wastewater (PRW). The treatment of real PRW, operational performance of the MFC system, biodegradation of furfural, and energy output were investigated in this study. The MFC was inoculated by mixed anaerobic bacteria, with Bacillus sp. as the dominant type, and continuously operated for 30 days. The biodegradation of furfural and phenol, which are the most prevalent toxicants in refinery wastewater, was investigated. The MFC system reached maximum energy outputs of 552.25 mW/m3 and 235 mV. In the anodic chamber, the maximum removal of furfural and phenol was higher than 99%, with biodegradation of organic content reaching up to 95%. This study demonstrated the viability of a continuous-flow MFC system as a green technology for the treatment of furfural-rich real refinery effluents while generating electricity.
Rocznik
Strony
107--114
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Biochemical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
  • Nanotechnology and Advanced Materials Research Center, University of Technology - Iraq, Baghdad, Iraq
  • Environment Research Center, University of Technology - Iraq, Baghdad, Iraq
  • Mechanical Engineering Department, University of Technology - Iraq, Baghdad, Iraq
Bibliografia
  • 1. Abu-Reesh, I.M., Kunju, A., Sevda, S. 2022. Performance of microbial fuel cells in treating petroleum refinery wastewater. Journal of Water Process Engineering, 49, 103029.
  • 2. Anbia, M., Mohammadi, N. 2009. A nanoporous adsorbent for removal of furfural from aqueous solutions. Desalination, 249(1), 150–153.
  • 3. Aoudj, S., Khelifa, A., Drouiche, N., Belkada, R., Miroud, D. 2015. Simultaneous removal of chromium (VI) and fluoride by electrocoagulation–electroflotation: application of a hybrid Fe-Al anode. Chemical Engineering Journal, 267, 153–162.
  • 4. Bhagat, M.S., Mungray, A.K., Mungray, A.A. 2022. Recent advances in osmotic microbial fuel cell technology: A review. Journal of the Indian Chemical Society, 100552.
  • 5. Castro, C.J., Goodwill, J.E., Rogers, B., Henderson, M., Butler, C.S. 2014. Deployment of the microbial fuel cell latrine in Ghana for decentralized sanitation. Journal of water, sanitation and hygiene for development, 4(4), 663–671.
  • 6. ElMekawy, A., Hegab, H. M., Pant, D., Saint, C.P. 2018. Bio‐analytical applications of microbial fuel cell–based biosensors for onsite water quality monitoring. Journal of applied microbiology, 124(1), 302–313.
  • 7. Farías, A., Echeverría, M., Utgés, E., Fontana, G., Cuadra, P. 2022. Furfural Biodegradation in Consortium through Bacillus licheniformis, Microbacterium sp. and Brevundimonas sp. Journal of Sustainable Development of Energy, Water and Environment Systems, 10(1), 1–10.
  • 8. Guo, X., Zhan, Y., Chen, C., Cai, B., Wang, Y., Guo, S. 2016. Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel. Renewable Energy, 87, 437–444.
  • 9. Huang, J., Wang, X., Jin, Q., Liu, Y., Wang, Y. 2007. Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite. Journal of environmental management, 84(2), 229–236.
  • 10. Huang, S., Zhang, J., Pi, J., Gong, L., Zhu, G. 2021. Long-term electricity generation and denitrification performance of MFCs with different exchange membranes and electrode materials. Bioelectrochemistry, 140, 107748.
  • 11. Kugarajah, V., Dharmalingam, S. 2021. Effect of silver incorporated sulphonated poly ether ether ketone membranes on microbial fuel cell performance and microbial community analysis. Chemical Engineering Journal,415, 128961.
  • 12. Lan, W.U., Gang, G.E., Jinbao, W.A.N. 2009. Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29. Journal of Environmental Sciences, 21(2), 237–242.
  • 13. Luo, Y., Liu, G., Zhang, R., Zhang, C. 2010. Power generation from furfural using the microbial fuel cell. Journal of Power Sources, 195(1), 190–194.
  • 14. Majumder, D., Maity, J.P., Tseng, M.J., Nimje, V.R., Chen, H.R., Chen, C.C., Chen, C.Y. 2014. Electricity generation and wastewater treatment of oil refinery in microbial fuel cells using Pseudomonas putida. International journal of molecular sciences, 15(9), 16772–16786.
  • 15. Mohanakrishna, G., Abu-Reesh, I.M., Pant, D. 2020. Enhanced bioelectrochemical treatment of petroleum refinery wastewater with Labaneh whey as co-substrate. Scientific Reports, 10(1), 1–11.
  • 16. Mohanakrishna, G., Abu-Reesh, I.M., Kondaveeti, S., Al-Raoush, R.I., He, Z. 2018. Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell. Bioresource Technology, 253, 16–21.
  • 17. Moon, H., Chang, I.S., Jang, J.K., Kim, B.H. 2005. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochemical engineering journal, 27(1), 59–65.
  • 18. Morris, J.M., Jin, S. 2007. Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. Journal of Environmental Science and Health, Part A, 43(1), 18–23.
  • 19. Moussavi, G., Leili, M., Nadafi, K. 2016. Investigation of furfural biodegradation in a continuous inflow cyclic biological reactor. Water Science and Technology, 73(2), 292–301.
  • 20. Neufeld, R., Greenfield, J., Rieder, B. 1986. Temperature, cyanide and phenolic nitrification inhibition. Water Research, 20(5), 633–642.
  • 21. Ortiz-Martínez, V.M., Salar-García, M.J., De Los Ríos, A.P., Hernández-Fernández, F.J., Egea, J.A., Lozano, L.J. 2015. Developments in microbial fuel cell modeling. Chemical Engineering Journal, 271, 50–60.
  • 22. Patil, P.D., Singh, A.A., Yadav, G.D. 2021. Biodegradation of organophosphorus insecticide chlorpyrifos into a major fuel additive 2, 4-bis (1, 1 dimethylethyl) phenol using white-rot fungal strain Trametes hirsuta MTCC-1171. Journal of the Indian Chemical Society, 98(9), 100120.
  • 23. Rosenbaum, M.A., Franks, A.E. 2014. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Applied microbiology and biotechnology, 98(2), 509–518.
  • 24. Song, T.S., Wu, X.Y., Zhou, C.C. 2014. Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess and biosystems engineering, 37(2), 133–138.
  • 25. Srikanth, S., Kumar, M., Singh, D., Singh, M.P., Das, B.P. 2016. Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation. Bioresource technology, 221, 70–77.
  • 26. Uygur, A., & Kargi, F. (2004). Phenol inhibition of biological nutrient removal in a four-step sequencing batch reactor. Process Biochemistry, 39(12), 2123–2128.
  • 27. Włodarczyk, P.P., Włodarczyk, B. 2017. Electrooxidation of coconut oil in alkaline electrolyte. Journal of Ecological Engineering, 18(5).
  • 28. Yakar, A., Türe, C., Türker, O.C., Vymazal, J., Saz, Ç. 2018. Impacts of various filtration media on wastewater treatment and bioelectric production in up-flow constructed wetland combined with microbial fuel cell (UCW-MFC). Ecological Engineering, 117, 120–132.
  • 29. You, J. 2016. Waste and wastewater clean-up using microbial fuel cells (Doctoral dissertation).
  • 30. Zhang, J., Yuan, H., Deng, Y., Zha, Y., Abu-Reesh, I. M., He, Z., Yuan, C. 2018. Life cycle assessment of a microbial desalination cell for sustainable wastewater treatment and saline water desalination. Journal of Cleaner Production, 200, 900–910.
  • 31. Zheng, D., Bao, J., Lu, J., Lv, Q. 2015. Biodegradation of furfural by Bacillus subtilis strain DS3. J. Environ. Biol, 36, 727–732.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ac68a2d-6c7d-401a-bf1a-a8612739a995
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.