PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of soil phosphatase activity, phosphorus and heavy metals content depending on the mineral fertilization

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena aktywności fosfataz, zawartości fosforu i metali ciężkich w zależności od nawożenia mineralnego
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research into the activity of alkaline and acid phosphatase, the content of available phosphorus, heavy metals and total organic carbon, against in soil with mineral fertilization only. The first experimental factor was phosphorus, potassium, magnesium, calcium and sulphur fertilization in six fertilizer combinations: 1: (PKMgCaS), 2: (KMgCaS), 3: (PMgCaS), 4: (PKCaS), 5: (PKMgS), 6: (PKMgCa). The second factor was made up of nitrogen fertilization at the rates of: 0, 50, 100, 150, 200, 250 kg·ha-1 of N. Increasing nitrogen rates and a lack of liming increased the soil acidity inhibiting alkaline phosphatase, decreasing the content of available phosphorus in soil. A lack of phosphorus fertilization resulted in an intensive increase in the activity of both alkaline and acid phosphatase in soil. Due to the experimental factors applied, the content of the heavy metals assayed was as follows: zinc> copper> lead> cadmium.
PL
W pracy przedstawiono wyniki badań nad aktywnością fosfatazy zasadowej i kwasowej, zawartość przyswajalnego fosforu, metali ciężkich i węgla organicznego w glebie nawożonej wyłącznie mineralnie. Pierwszym czynnikiem doświadczenia było nawożenie fosforem, magnezem, wapniem i siarką w sześciu kombinacjach nawozowych: 1 (PKMgCa S), 2: (KMgCaS), 3: (PMgCaS), 4: (PKCaS), 5: (PKMgS), 6: (PKMgCa). Czynnikiem drugim - nawożenie azotem w dawkach: 0, 50, 100, 150, 200, 250 kg N·ha-1. Wzrastające dawki azotu i brak wapnowania spowodowały wzrost kwasowości gleby powodując inhibicje fosfatazy alkalicznej, zmniejszenie zawartości fosforu przyswajalnego w glebie. Brak nawożenia fosforem spowodował intensywny wzrost aktywności zarówno fosfatazy alkalicznej jaki i kwaśnej w glebie. Pod wpływem zastosowanych czynników doświadczalnych, zawartość metali ciężkich, kształtowała sie w sposób następujący: cynk> miedź> ołów> kadm.
Twórcy
  • Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy, Wydział Rolnictwa i Biotechnologii, Zakład Biochemii, 85-029 Bydgoszcz, ul. Bernardyńska 6, Poland
  • Department of Soil Science and Soil Protection University of Science and Technology in Bydgoszcz
Bibliografia
  • Bartkowiak, A. and Lemanowicz, J. (2014). Application of biochemical testes to evaluate the pollution of the Unislaw Basin soils with heavy metals. International Journal Environmental Research, 8 (1), 93-100.
  • Berbecea, A., Radulov, I., Sala, F., Crista, F. and Lato, A. (2011). Interrelation between metal availability, soil pH and mineral fertilization. Research Journal Agricultural Science, 43, 19-22.
  • Bęś, A. and Warmiński, K. (2015). Changes in organic carbon concentrations in reclaimed light soils. Scientific Review – Engineering and Environmental Sciences 67 (1), 3-12.
  • Conceiçăo, F., Navarro, G.R.B. and Silva, A.M. (2013). Anthropogenic Influences on Cd, Cr, Cu, Ni, Pb and Zn concentrations in soils and sediments in a watershed with sugar cane crops at Săo Paulo State, Brazil. International Journal Environmental Research, 7, 551-560.
  • Regulation of the Minister of Environment dated 9 September 2002 on standards soil quality and land quality standards. Dz.U. 2002 No 165 item 1359 [in Polish].
  • European Council (1991). Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Official Journal of the European Union L 375 (31/12/1991).
  • Fortune, S., Lu, J., Aaddiscot, T.M. and Brookes, P.C. (2005). Assessment of phosphorus leaching losses from arable land. Plant Soil, 269, 99-108.
  • Guala, S.D., Vega, F.A. and Covelo, E.F. (2010). The dynamics of heavy metals in plant–soil interactions. Ecological Modelling, 221, 1148-1152.
  • He, Z.L.L., Yang, X.E. and Stoffella, P.J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal Trace Elements Medicine Biology, 19, 125-140.
  • Hinojosa, M.B., Carreira, J.A., Rodriguez-Maroto, J.M. and Garcia-Ruiz, R. (2008). Effects of pyrite pollution on soil enzyme activities: ecological dose-response model. Science Total Environmental, 25, 89-99.
  • Kandeler, E., Tscherko, D., Bruce, K.D., Stemmer, M., Hobbs, P.J., Bargett, R.D. and Amelung, W. (2000). Long-term monitoring of microbial biomass, N mineralization and enzyme activities of a Chernozem under different tillage management. Biology Fertility Soils, 32, 390-400.
  • Kong, A.Y.Y., Six, J., Bryant, D.C., Denison, R.F. and Van Kessel, C. (2005). The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society America Journal, 69, 1078-1085.
  • Lemanowicz, J. (2013). Mineral fertilization as a factor determining selected sorption properties of soil against the activity of phosphatases. Plant Soil Environment, 59, 439-445.
  • Lemanowicz, J. and Bartkowiak, A. (2013a). Effect of cultivation intensity on the content and distribution of phosphorus and heavy metals in selected soil profiles of Luvisols. Scientific Review – Engineering and Environmental Sciences, 61 (3), 273-280.
  • Lemanowicz, J. and Bartkowiak, A. (2013b). Diagnosis of the content of selected heavy metals in the soils of the Pałuki region against their enzymatic activity. Archives Environmental Protection, 39, 23-32.
  • Lemanowicz, J., Siwik-Ziomek, A. and Koper, J. (2013). Content of total phosphorus in soil under maize treated with mineral fertilization against the phosphatase activity. Journal Elementology, 18, 415-424.
  • Lemanowicz, J., Siwik-Ziomek, A. and Koper, J. (2014a). Effects of farmyard manure and nitrogen fertilizers on mobility of phosphorus and sulphur in wheat and activity of selected hydrolases in soil. International Agrophysics, 28, 49-55
  • Lemanowicz, J., Siwik-Ziomek, A. and Koper, J. (2014b). How fertilization with farmyard manure and nitrogen affects available phosphorus content and phosphatase activity in soil. Polish Journal Environmental Studies, 23 (4), 1211-1217.
  • Li, Y.T., Rouland, C., Benedetti, M., Li, F., Pando, A., Lavelle, P. and Dai, J. (2009). Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biology Biochemistry, 41, 969-977.
  • PN-R-04023:1996. Chemical and agricultural analysis – determination of the content of available phospho rus in mineral soils. [in Polish].
  • PN-ISO 10390:1997. Chemical and Agricultural Analysis – Determining soil pH. [in Polish].
  • PN-ISO:14870:2007. Soil quality. Extraction of trace elements by buffered DTPA [in Polish].
  • Rutkowska, A. and Pikuła, D. (2013). Effect of crop rotation and nitrogen fertilization on the quality and quantity of soil organic matter. Hernandez Soriano M.C. (ed.). Soil processes and current trends in quality assessment, chapter 9, 249-267.
  • Skwierawska, M., Zawartka, L., Skwierawski, A. and Nogalska, A. (2012). The effect of different sulfur doses and forms on changes of soil heavy metals. Plant Soil Environment, 58, 135-140.
  • Steiner, C., Teixeira, G., Lehmman, J., Nehls, T., Vasconcelos De Macedo, J.L., Blum, W.E.H. and Zech, W. (2007). Long term of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil, 291, 275-290.
  • Tabatabai, M.A. and Bremner, J.M. (1969). Use of p-nitrophenolphosphate for assay of soil phosphatase activity. Soil Biology Biochemistry 1, 301-307.
  • Thomas, E.Y., Omueti, J.A.I. and Ogundayomi, O. (2012). The effect of phosphate fertilizer on heavy metal in soils and Amaranthus caudatu. Agriculture Biology Journal North America, 3, 145-149.
  • Wang, Y.P., Shi, J.Y., Lin, Q., Chen, X.C. and Chen, Y.X. (2007). Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. Journal Environmental Science, 19, 848-853.
  • Zakarauskaitë, D., Vaisvila, Z., Motuzas, A., Grigaliűnienë, K., Buivydaite, V.V., Vaisvalavičius, R. and Butkus, V. (2008). The influence of long-term application of mineral fertilizers on the biological activity of Cambisols. Ekologija, 54, 173-178.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ac67552-0ccc-492d-861a-859e3ccdada6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.