PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geospatial Assessment of Soil Organic Matter Variability at Sidi Bennour District in Doukkala Plain in Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding the spatial variability of soil organic matter (SOM) is critical for studying and assessing soil fertility and quality. This knowledge is important for soil management, which results in high crop yields at a reduced cost of crop production and helps to protect the environment. The benefits of an accurate interpolation of SOM spatial distribution are well known at the agricultural, economic, and ecological levels. It has been conducted this study for comparing and analyze different spatial interpolation methods to evaluate the spatial distribution of SOM in Sidi Bennour District, which is a semi-arid area in the irrigated scheme of the Doukkala Plain, Morocco. For conding this study, it was collected 368 representative soil samples at a depth of 0–30 cm. A portable global positioning system was used to obtain the location coordinates of soil sampling sites. The SOM spatial distribution was performed using four interpolation methods: inverse distance weighted and local polynomial interpolation as deterministic methods, and ordinary kriging and empirical Bayesian kriging as geostatistical methods. High SOM levels were concentrated in vertisols, and low SOM levels were observed in immature soils. The average SOM value was 1.346%, with moderate to high variability (CV = 35.720%). A low SOM concentration indicates a continuous possibility of soil degradation in the future. Ordinary kriging yielded better results than the other interpolation methods (RMSE = 0.395) with a semivariogram fitted by an exponential model, followed by inverse distance weighted (RMSE = 0.397), empirical Bayesian kriging (RMSE = 0.400), and local polynomial interpolation (RMSE = 0.412). Soil genetics and the strong influence of human activity are the major sources of SOM spatial dependence, which is moderate to low. Low SOM content levels (< 1.15%) were present in the southwestern and eastern parts of the digital map. This situation calls for the implementation of specific soil recovery measures.
Rocznik
Strony
120--130
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Department of Geology, Faculty of Sciences, Chouaib Doukkali University, BP.20, 24000, El Jadida, Morocco
  • Department of Geology, Faculty of Sciences, Chouaib Doukkali University, BP.20, 24000, El Jadida, Morocco
  • Department of Geology, Faculty of Sciences, Chouaib Doukkali University, BP.20, 24000, El Jadida, Morocco
  • Department of Geology, Faculty of Sciences, Chouaib Doukkali University, BP.20, 24000, El Jadida, Morocco
Bibliografia
  • 1. Aboutayeb R., El Yousfi B., El Gharras O. 2020. Impact of no-till on physicochemical properties of vertisols in chaouia region of Morocco. Eurasian J Soil Sci. 9, 119–125. https://doi.org/10.18393/ejss.663502
  • 2. Badraoui M. 2006. Connaissance et utilisation des ressources en sol au Maroc. Rapp général ‘50 ans développement Hum Perspect, 2025, 91–117.
  • 3. Badraoui M., Agbani M., Soudi B. 2000. Evolution de la qualité des sols sous mise en valeur intensive au Maroc. Séminaire ‘Intensification Agric Qual des sols des eaux’, Rabat, Maroco, 2–3.
  • 4. Badraoui M., Bouaziz A., Kabbassi M. 1993. Contraintes physiques et potentialités du milieu sol dans les Doukkala. Proj Développement amélioration la Prod céréalière en irrigué, 1.
  • 5. Bhunia G.S., Shit P.K., Maiti R. 2018. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J Saudi Soc Agric Sci, 17, 114–126. https://doi.org/https://doi.org/10.1016/j.jssas.2016.02.001
  • 6. Bogunovic I., Kisic I., Mesic M., et al. 2017. Reducing sampling intensity in order to investigate spatial variability of soil pH, organic matter and available phosphorus using co-kriging techniques. A case study of acid soils in Eastern Croatia. Arch Agron Soil Sci, 63, 1852–1863. https://doi.org/10.1080/03650340.2017.1311013
  • 7. Bouasria A., Ibno Namr K., Rahimi A., Ettachfini E.M. 2020. Soil organic matter estimation by using Landsat-8 pansharpened image and machine learning. In: 4th International Conference On Intelligent Computing in Data Sciences (ICDS). Fez, Morocco 2020, 1–8.
  • 8. Cambardella C.A., Moorman T.B., Novak J.M., et al. 1994. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci Soc Am J, 58, 1501–1511. https://doi.org/https://doi.org/10.2136/sssaj1994.03615995005800050033x
  • 9. CPCS. 1967. Classification des sols. Grognon, France.
  • 10. Dahan R., Boughlala M., Mrabet R., et al. 2001. A review of available Knowledge on Land Degradation in Morocco.
  • 11. Dai F., Zhou Q., Lv Z., et al. 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol Indic, 45, 184–194. https://doi.org/10.1016/j.ecolind.2014.04.003
  • 12. Dhaliwal S.S., Naresh R.K., Mandal A., et al. 2019. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ Sustain Indic, 1–2, 100007. https://doi.org/10.1016/j.indic.2019.100007
  • 13. Đurđević B., Jug I., Jug D., et al. 2019. Spatial variability of soil organic matter content in Eastern Croatia assessed using different interpolation methods. Int Agrophysics, 33, 31–39. https://doi.org/10.31545/intagr/104372
  • 14. Farina R., Marchetti A., Francaviglia R., et al. 2017. Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types. Agric Ecosyst Environ, 238, 128–141. https://doi.org/10.1016/j.agee.2016.08.015
  • 15. Geoffroy J.-L. 1978. Carte pédologique: Plaine des Doukkala.
  • 16. Goovaerts P. 1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89, 1–45. https://doi.org/10.1016/S0016–7061(98)00078–0
  • 17. Gribov A., Krivoruchko K. 2020. Empirical Bayesian kriging implementation and usage. Sci Total Environ, 722, 137290. https://doi.org/10.1016/j.scitotenv.2020.137290
  • 18. Ibno Namr K., Mrabet R. 2004. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco. J African Earth Sci, 39, 485–489. https://doi.org/10.1016/j.jafrearsci.2004.07.016
  • 19. Johnston A.E., Poulton P.R., Coleman K. 2009. Chapter 1 Soil Organic Matter: Its Importance in Sustainable Agriculture and Carbon Dioxide Fluxes. In: Sparks DLBT-A in A (ed). Academic Press, 1–57
  • 20. Kerry R., Oliver M.A. 2007. Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma, 140, 383–396. https://doi.org/https://doi.org/10.1016/j.geoderma.2007.04.019
  • 21. Krivoruchko K., Gribov A. 2019. Evaluation of empirical Bayesian kriging. Spat Stat, 32, 100368. https://doi.org/10.1016/j.spasta.2019.100368
  • 22. Laghrour M., Moussadek R., Mrabet R., Mekkaoui M. 2018. Effet à moyen et à long terme du semis direct sur la matière organique, la stabilité structurale et la compaction des sols argileux au Maroc. Rev Marocaine des Sci Agron Vétérinaires, 7, 356–362.
  • 23. Lehmann J., Kleber M. 2015. The contentious nature of soil organic matter. Nature, 528, 60–68. https://doi.org/10.1038/nature16069
  • 24. Liu D., Wang Z., Zhang B., et al. 2006. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, North-east China. Agric Ecosyst Environ, 113, 73–81. https://doi.org/10.1016/j.agee.2005.09.006
  • 25. Liu R., Chen Y., Sun C., et al. 2014. Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods. Mar Pollut Bull, 86, 68–75. https://doi.org/10.1016/j.marpolbul.2014.07.041
  • 26. Long J., Liu Y., Xing S., et al. 2020. Optimal interpolation methods for farmland soil organic matter in various landforms of a complex topography. Ecol Indic, 110, 105926. https://doi.org/10.1016/j.ecolind.2019.105926
  • 27. Mabit L., Bernard C. 2010. Spatial distribution and content of soil organic matter in an agricultural field in eastern Canada, as estimated from geostatistical tools. Earth Surf Process Landforms, 35, 278–283. https://doi.org/10.1002/esp.1907
  • 28. Marchetti A., Piccini C., Francaviglia R., Mabit L. 2012. Spatial Distribution of Soil Organic Matter Using Geostatistics: A Key Indicator to Assess Soil Degradation Status in Central Italy. Pedosphere, 22, 230–242. https://doi.org/10.1016/S1002–0160(12)60010–1
  • 29. Mirzaee S., Ghorbani-Dashtaki S., Mohammadi J., et al. 2016. Spatial variability of soil organic matter using remote sensing data. CATENA, 145, 118–127. https://doi.org/10.1016/j.catena.2016.05.023
  • 30. Mrabet R., El-Brahli A., Anibat I., Bessam F. 2004. No-tillage technology: research review of impacts on soil quality and wheat production in semiarid Morocco. In: C. C-M., D.G (eds) Options Mediterraneennes. Serie A, Seminaires Mediterraneens. Zaragoza: CIHEAM, 133–138.
  • 31. Mrabet R., Moussadek R., Fadlaoui A., van Ranst E. 2012. Conservation agriculture in dry areas of Morocco. F Crop Res, 132, 84–94. https://doi.org/10.1016/j.fcr.2011.11.017
  • 32. Mulla D.J., McBratney A.B. 2001. Soil spatial variability. Soil Phys Companion, 343–373. https://doi.org/10.1016/0167–1987(87)90053–5
  • 33. Naman F., Soudi B., Adlouni C., Chiang C.N. 2015. Humic balance of soils under intensive farming: The case of soils irrigated perimeter of Doukkala in Morocco, 6, 3574–3581.
  • 34. Oliver M.A., Webster R. 2015. The Variogram and Modelling BT – Basic Steps in Geostatistics: The Variogram and Kriging. In: Oliver MA, Webster R (eds). Springer International Publishing, Cham, 15–42
  • 35. ORMVAD. 2020. Rapport d’activité annuel de l’ORMVA des Doukkala. El Jadida, Morocco.
  • 36. Pang S., Li T.-X., Zhang X.-F., et al. 2011. Spatial variability of cropland lead and its influencing factors: A case study in Shuangliu county, Sichuan province, China. Geoderma, 162, 223–230. https://doi.org/https://doi.org/10.1016/j.geoderma.2011.01.002
  • 37. Robinson T.P., Metternicht G. 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput Electron Agric, 50, 97–108. https://doi.org/https://doi.org/10.1016/j.compag.2005.07.003
  • 38. Sahu B., Ghosh A.K., Seema. 2021. Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Reg, 26, e00413. https://doi.org/10.1016/j.geodrs.2021.e00413
  • 39. Schaum A. 2008. Principles of local polynomial interpolation. In: 2008 37th IEEE Applied Imagery Pattern Recognition Workshop, 1–6.
  • 40. Soudi B., Naman F., Chiang C.N. 2000. Problématique de gestion de la matière organique des sols : cas des périmètres irrigués du Tadla et des Doukkala. Séminaire “Intensification Agric Qual des sols des eaux”, Rabat, 2–3.
  • 41. Tripathi R., Nayak A.K., Shahid M., et al. 2015. Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arab J Geosci, 8, 10693–10703. https://doi.org/10.1007/s12517–015–2003–4
  • 42. Van Kernebeek H.R.J., Oosting S.J., Van Ittersum M.K., et al. 2016. Saving land to feed a growing population: consequences for consumption of crop and livestock products. Int J Life Cycle Assess 21, 677–687. https://doi.org/10.1007/s11367–015–0923–6
  • 43. Venteris E.R., Basta N.T., Bigham J.M., Rea R. 2014. Modeling Spatial Patterns in Soil Arsenic to Estimate Natural Baseline Concentrations. J Environ Qual, 43, 936–946. https://doi.org/https://doi.org/10.2134/jeq2013.11.0459
  • 44. Walkley A., Black I.A. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci, 37, 29–38. https://doi.org/10.1097/00010694–193401000–00003
  • 45. Webster R., Oliver M.A. 2008. Geostatistics for Environmental Scientists: Second Edition. John Wiley and Sons, Rothamsted Research, United Kingdom.
  • 46. Xie Y., Chen T., Lei M., et al. 2011. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere 82, 468–476. https://doi.org/10.1016/j.chemosphere.2010.09.053
  • 47. Yang F., Zhang G.-L., Yang J.-L., et al. 2014. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. J Hydrol, 519, 3010–3027. https://doi.org/10.1016/j.jhydrol.2014.10.054
  • 48. Zhang Z., Yu D., Shi X., et al. 2011. Effects of prediction methods for detecting the temporal evolution of soil organic carbon in the Hilly Red Soil Region, China. Environ Earth Sci, 64, 319–328. https://doi.org/10.1007/s12665–010–0849-z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ac630d7-1218-4ffc-8aa8-d53d782d7f87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.