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We consider the problem of parametric sound generation in an acoustic interferometer
containing a fluid. We have taken explicitly into account both the influence of the nonlinearly
generated second harmonic and the effect of the unavoidable rising of the temperature due to
the acoustic wave. Two main new features under these considerations can be observed. On
one hand, the fundamental field does not achieve a saturating value when subharmonics fields
appear, but still grows with the driving. On the other hand, the subharmonics fields can exist
only for a limited range of driving value, due to the dependence of the cavity resonances with
the temperature of the medium. The experimental setup was designed and we show here the
experimental measurements, which are in good agreement with the predicted values for the
mode amplitudes and the parametric threshold.

INTRODUCTION

The observation of nonlinear effects and in paldicuparametric phenomena in
acoustics requires high-intensity fields. High dgiyalesonators are the most adequate systems
for achieving intense fields. One simple configimaiconsists in two plane and parallel walls,
one of them vibrating with a driving frequency fa this configuration, nearly one-
dimensional standing waves are formed along th&ycahhis system was the basis of the first
experimental observation of acoustic parametridlaton in a fluid [1,2]. This phenomenon
[3] consists in the emergence of oscillation modegrequencies smaller than that of the
driving when a parameter is varied periodicallytime. This is a universal phenomenon,
which has been demonstrated in a large varietyhgsipal systems. [4]. In the case of the
acoustical resonator, the length of the cavity (#ngs the eigenfrequencies of the normal
modes) is the time-dependent parameter, and tlamgdric excitation is achieved when the



input energy is high enough to overcome the disisipdosses. The parametric fields usually
appear as doublets, whose frequenciesfl $ add to match the driving frequency

fo, i.e., b= f1+ fp, although in some circumstances the half-frequanoge (degenerated) is
observed.

A theoretical description, based on the Mathieuatign, has been successfully applied
to the description of these processes in an acalistiterferometer, allowing predicting the
subharmonic spectrum and its excitation thresh&)8][ This theory was also applied to the
interferometer case,[6-9] but the agreement with ékperiment [6] was mainly qualitative.
The discrepancies can be interpreted in termsefrthuence of the first higher harmonics,
introducing additional features that cannot be wagat by the fully dispersive model, where
higher harmonics of the pump are absent.

In a previous work [10] we extended the previoweotktical description of parametric
sound generation in a fluid-filled interferometéo, include the coupling with the second
harmonic in the case of degenerated parametricsicogeneration, giving rise to new
phenomena as bistability or hysteresis. In thiskwee derived the model to include higher
harmonic influence in the most usual case of noedegated parametric oscillation#ff,)
and we considered in the model the unavoidablecefb¢ the rising of the temperature
induced by the acoustic wave in the medium. Whenhtkating of the medium taken into
account, the system exhibits new features due @éoctfange of the system resonances: the
threshold value of the parametric oscillation isfted, the fundamental mode does not
saturate after the subharmonic generation and xisteace of parametrically generated
subharmonic field can be limited to a finite ramgelriving amplitudes. All these phenomena
have been experimentally observed, in very goodeagent with the theoretical prediction of
the model.

1. THEORY

The acoustical interferometer considered is congdgetwo parallel and solid walls,
with thicknesses D and H, respectively, located distance L from each other, containing a
fluid medium inside. Each medium involved in thedabis acoustically characterized by its
densityp, bulk modulus, and sound velocity c, related & & / p. The resonance modes
(eigenfrequencies) of the resonator depend on thasaneters. We consider now the driven
system, assuming that one of the walls vibratel fkgtquency fO. Then, above the parametric
generation threshold the spectrum inside the réspman be decomposed in two sets: the
subharmonics resulting from the parametric insiigbihind the higher harmonics of the
driving n fo, with n an integer number. The amplitude of any of thesmenbnics decreases
with the detuning, defined as the difference betwibe corresponding field frequenay and
the frequency of the closest modé;, i.e., 3,=w,—w". Usually only harmonics with smail
reach significant amplitude, but the effects of $beond harmonic must be taken into account
in most of the cases [10].

The existence of the acoustic wave provokes amsantr change in the temperature of
the medium. When temperature increases, the soalwtity changes and then the cavity
modes are shifted, so changing unavoidably thendeguvalues. The previous models of
parametric acoustic generation in acoustic resosdtad ignored the temperature evolution
with driving amplitude. We extend the model forluding both the effects of the second
harmonic and temperature rising in the general oas®ndegenerated parametric generation
in an plane-wall acoustic interferometer.



Under these assumptions, and following the teclaidescribed in detail in [8] for
dispersive resonators, the evolution of the slovdyying amplitude for each mode is given
by the given system equations (Egs. 1):

dP1/dt =-(y1+1 (61 +aAT)) P; -1 0Py P2" wy,

dP> /dt = - (y2+1 (62 +aAT)) P, -1 0Py P1" wo,

dPg/dt = - (yo+1 (6g+axAT)) Py —1 0wg (P1 P2 + P4 Pp* ) +c P /1L,
(6 ))

dPy/dt = —(yp+1 Ppb -io Pﬁ W

corresponding to the first and second subharmaelds, second harmonic and fundamental
(driving), respectively. Other parameters are dbvs: B, is the driving amplitudey,
(n=0,1,2,h) are the decay rates of each mode inatigy, o=(1+B/(2A))/(4 p ), is related to
the nonlinearity parameter B/A of the fluid,=w,—w’, are the detunings anal, are the
coefficients describing the resonance shift whemperature changed\T from the
equilibrium value. In first approximation (an idesuation), the eigenmodes of the cavity are
proportional to the sound velocity in the fluidfn c/2L). This sound velocity linearly
changes with the temperature in a enough smalkrahtemperatures around the equilibrium,
so it can be assumed that the effect of temperatamation on the cavity resonances is a
modification on the detuning values, proportiomatite temperature variation. The valuenof
can be obtained from the evaluation of the soumalcity dependence on temperature (Fig. 1).
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Fig.1. Sound velocity evolution with temperaturenfr 10 to 30 °C in water.

The dynamical system given by Eg. 1 can be reduced simpler, dimensionless form,
defining the new variables,y/ande by

i Ag pc® VY1 ye _ip c® An Yo P, _ iA; 0 VY2 Yo

g C VW W2

and the parameterS=y1y./\oYh, Q:wlcoz/ui)z An=0n/Yn. The model obtained reads (Egs.2)
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The stationary solution of Egs. 2 when the systerhelow the parametric generation
threshold, A=A,=0, are known and given in [10]. When the drivingpditude exceeds the
parametric generation threshold, which has beerengally evaluated in the model including
the evolution of the second harmonic, the subhartsofields emerge. This threshold is
modified due to the temperature change. In the oadbe system described in the present
work, the variation of the temperature dependshenamplitude of the driving field. In the
simplest approach, for a range of driving amplituddues, it can be considered that
temperature grows linearly with drivingT= £.This assumption is in good agreement with
the experimental observations, ghdan be evaluated from the registered measurements.

The numerical integration of (Eqs.2) is shown ig.Eifor a set of parameters (see
figure caption)
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Fig.2. Numerical simulation okvolution of fundamental (continous line), subhanmse (tiny dashed
line) and second harmonic (large dashed) in frodti@ing amplitude. Parameter values akg=0.8
0,=0, Ay=0.5,A,=3,y1=73 y»=100,Y,=100 y,=120Q=4.02 andaf3= 0.14.

2. EXPERIMENT

The resonator consists in two piezoceramic digks’700 kg/mi and ¢=4400 m/ s)
with radius of 1.5 cm and thicknesses of 1 and 2 (eorresponding to resonance frequencies
around 2 and 1 MHz, respectively), mounted in aiBlas tank containing distilled and
degassed watep (=1000 kg/mi and c=1480 m/s at T=20 °C). Both sides are located
variable distance L( L=3.4cm), and its parallelisem be carefully adjusted to get a high-Q



interferometer. One of the piezoceramics—that wasonance frequency around 2 MHz—is
driven by the signal provided by a function gernargAgilent 33220) and a broadband rf
power amplifier ENI 240L. The experimental setupasnpleted by a needle
hydrophone (TNUA200 NTR Systems) to measure thacawity pressure field. In this way,
by changing the amplitude of the driving source,aneable to follow the bifurcation diagram
of the resonator for a given set of parametersiddigh the pump value and the decay rgtes
can be unambiguously determined by measuring tie Width of the cavity modes, the
detuning parameters change when driving increaiesto the intrinsic temperature rising,
and are in the experiment are measured at thelaguih temperature, T=23°C.
One of the experimental results is shown in Fig. 3
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Fig.3. Evolution of fundamental (dots), subharme(déamonds and squares) and second harmonic

(triangles) in front of driving amplitud®ar anet er val ues are A;=0.8A,=0,A,=0.5,A4=3,
v1=73 y,=100,Y,=100 y,=120.

We note the good qualitative agreement with theerigal results shown in Fig.2: shift
of parametric threshold, finite range in driving @itude of existence of parametric
generation and growing of fundamental and secomthdwaic fields far from the threshold,
with a different slopes when subharmonic fieldsgesent.

First approach confirm that this agreement is ooly quantitative but also
quantitative when the sensitivity of hydrophoneesasasidered, as is shown in Fig.4.
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Fig.4. Numerical simulation (continous line) and experitaénesult (points) for the evolution of first

(red) and second (blue) subharmonic field in treeaorrespondig to Fig.1 and Fig.2
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