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We consider the problem of parametric sound generation in an acoustic interferometer 
containing a fluid. We have taken explicitly into account both the influence of the nonlinearly 
generated second harmonic and the effect of the unavoidable rising of the temperature due to 
the acoustic wave. Two main new features under these considerations can be observed. On 
one hand, the fundamental field does not achieve a saturating value when subharmonics fields 
appear, but still grows with the driving. On the other hand, the subharmonics fields can exist 
only for a limited range of driving value, due to the dependence of the cavity resonances with 
the temperature of the medium. The experimental setup was designed and we show here the 
experimental measurements, which are in good agreement with the predicted values for the 
mode amplitudes and the parametric threshold.  

 
 

INTRODUCTION  

The observation of nonlinear effects and in particular, parametric phenomena in 
acoustics requires high-intensity fields. High quality resonators are the most adequate systems 
for achieving intense fields. One simple configuration consists in two plane and parallel walls, 
one of them vibrating with a driving frequency f. In this configuration, nearly one-
dimensional standing waves are formed along the cavity. This system was the basis of the first 
experimental observation of acoustic parametric oscillation in a fluid [1,2]. This phenomenon 
[3] consists in the emergence of oscillation modes at frequencies smaller than that of the 
driving when a parameter is varied periodically in time. This is a universal phenomenon, 
which has been demonstrated in a large variety of physical systems. [4]. In the case of the 
acoustical resonator, the length of the cavity (and thus the eigenfrequencies of the normal 
modes) is the time-dependent parameter, and the parametric excitation is achieved when the 



input energy is high enough to overcome the dissipative losses. The parametric fields usually 
appear as doublets, whose frequencies f1 and f2 add to match the driving frequency 
f0, i.e., f0= f1+ f2, although in some circumstances the half-frequency mode (degenerated) is 
observed. 

A theoretical description, based on the Mathieu equation, has been successfully applied 
to the description of these processes in an acoustical interferometer, allowing predicting the 
subharmonic spectrum and its excitation threshold [4,5]. This theory was also applied to the 
interferometer case,[6-9] but the agreement with the experiment [6] was mainly qualitative. 
The discrepancies can be interpreted in terms of the influence of the first higher harmonics, 
introducing additional features that cannot be captured by the fully dispersive model, where 
higher harmonics of the pump are absent. 

In a previous work [10] we extended the previous theoretical description of parametric 
sound generation in a fluid-filled interferometer, to include the coupling with the second 
harmonic in the case of degenerated parametric acoustic generation, giving rise to new 
phenomena as bistability or hysteresis. In this work we derived the model to include higher 
harmonic influence in the most usual case of nondegenerated parametric oscillation (f1≠ f2) 
and we considered in the model the unavoidable effect of the rising of the temperature 
induced by the acoustic wave in the medium. When the heating of the medium taken into 
account, the system exhibits new features due to the change of the system resonances: the 
threshold value of the parametric oscillation is shifted, the fundamental mode does not 
saturate after the subharmonic generation and the existence of parametrically generated 
subharmonic field can be limited to a finite range of driving amplitudes. All these phenomena 
have been experimentally observed, in very good agreement with the theoretical prediction of 
the model. 

 
1. THEORY   

The acoustical interferometer considered is composed by two parallel and solid walls, 
with thicknesses D and H, respectively, located at a distance L from each other, containing a 
fluid medium inside. Each medium involved in the model is acoustically characterized by its 
density ρ, bulk modulus κ, and sound velocity c, related as c2= κ / ρ. The resonance modes 
(eigenfrequencies) of the resonator depend on these parameters. We consider now the driven 
system, assuming that one of the walls vibrates with frequency f0. Then, above the parametric 
generation threshold the spectrum inside the resonator can be decomposed in two sets: the 
subharmonics resulting from the parametric instability and the higher harmonics of the 
driving n f0, with n an integer number. The amplitude of any of these harmonics decreases 
with the detuning, defined as the difference between the corresponding field frequency ωn and 
the frequency of the closest mode, ωc

n, i.e., δn=ωn−ωc
n. Usually only harmonics with small n 

reach significant amplitude, but the effects of the second harmonic must be taken into account 
in most of the cases [10].  

The existence of the acoustic wave provokes an intrinsic change in the temperature of 
the medium. When temperature increases, the sound velocity changes and then the cavity 
modes are shifted, so changing unavoidably the detuning values. The previous models of 
parametric acoustic generation in acoustic resonators had ignored the temperature evolution 
with driving amplitude. We extend the model for including both the effects of the second 
harmonic and temperature rising in the general case of nondegenerated parametric generation 
in an plane-wall acoustic interferometer.  



Under these assumptions, and following the technique described in detail in [8] for 
dispersive resonators, the evolution of the slowly-varying amplitude for each mode is given 
by the given system equations (Eqs. 1): 

 
corresponding to the first and second subharmonic fields,  second harmonic and fundamental 
(driving), respectively. Other parameters are as follows: Pin is the driving amplitude, γn 
(n=0,1,2,h) are the decay rates of each mode in the cavity, σ=(1+Β/(2Α))/(4 ρ c2), is related to 
the nonlinearity parameter B/A of the fluid, δn=ωn−ωc

n are the detunings and αn are the 
coefficients describing the resonance shift when temperature changes ∆T from the 
equilibrium value. In first approximation (an ideal situation), the eigenmodes of the cavity are 
proportional to the sound velocity in the fluid (fn= n c/2L). This sound velocity linearly 
changes with the temperature in a enough small range of temperatures around the equilibrium, 
so it can be assumed that the effect of temperature variation on the cavity resonances is a 
modification on the detuning values, proportional to the temperature variation. The value of α 
can be obtained from the evaluation of the sound velocity dependence on temperature (Fig. 1). 
 

 
 
 

Fig.1. Sound velocity evolution with temperature from 10 to 30 ºC in water. 
 
 
 
The dynamical system given by Eq. 1 can be reduced to a simpler, dimensionless form, 
defining the new variables An and ε by 

 
and the parameters  Γ=γ1γ2/γ0γh, Ω=ω1ω2/ω0

2 ∆n=δn/γn. The model obtained reads (Eqs.2) 

c 

  10                    20                   30  
T(ºC) 



 

 
The stationary solution of Eqs. 2 when the system is below the parametric generation 

threshold, A1=A2=0, are known and given in [10]. When the driving amplitude exceeds the 
parametric generation threshold, which has been numerically evaluated in the model including 
the evolution of the second harmonic, the subharmonics fields emerge. This threshold is 
modified due to the temperature change. In the case of the system described in the present 
work, the variation of the temperature depends on the amplitude of the driving field. In the 
simplest approach, for a range of driving amplitude values, it can be considered that 
temperature grows linearly with driving, ∆T=β  ε.This assumption is in good agreement with 
the experimental observations, and β can be evaluated from the registered measurements. 

The numerical integration of (Eqs.2) is shown in Fig.2 for a set of parameters (see 
figure caption)  
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Fig.2. Numerical simulation of evolution of fundamental (continous line), subharmonics (tiny dashed 
line) and second harmonic (large dashed) in front of driving amplitude.  Parameter values are ∆1=0.8, 

∆2=0, ∆0=0.5, ∆h =3, γ1=73, γ2=100, γ0=100, γh=120 Ω=4.02 and αβ= 0.14. 
 

2. EXPERIMENT 

 The resonator consists in two piezoceramic disks (ρ=7700 kg/m3 and c=4400 m/ s) 
with radius of 1.5 cm and thicknesses of 1 and 2 mm (corresponding to resonance frequencies 
around 2 and 1 MHz, respectively), mounted in a Plexiglas tank containing distilled and 
degassed water (ρ =1000 kg/m3 and c=1480 m/s at T=20 °C). Both sides are located at a 
variable distance L( L=3.4cm), and its parallelism can be carefully adjusted to get a high-Q 



interferometer. One of the piezoceramics—that with resonance frequency around 2 MHz—is 
driven by the signal provided by a function generator (Agilent 33220) and a broadband rf 
power amplifier ENI 240L. The experimental setup is completed by a needle 
hydrophone (TNUA200 NTR Systems) to measure the intracavity pressure field. In this way, 
by changing the amplitude of the driving source, we are able to follow the bifurcation diagram 
of the resonator for a given set of parameters. Although the pump value and the decay rates γn 

can be unambiguously determined by measuring the line width of the cavity modes, the 
detuning parameters change when driving increases, due to the intrinsic temperature rising, 
and are in the experiment are measured at the equilibrium temperature, T=23ºC. 
 One of the experimental results is shown in Fig. 3 
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Fig.3. Evolution of fundamental (dots), subharmonics(diamonds and squares) and second harmonic 
(triangles) in front of driving amplitude. Parameter values are ∆1=0.8, ∆2=0, ∆0=0.5, ∆h =3, 

γ1=73, γ2=100, γ0=100, γh=120. 
 

We note the good qualitative agreement with the numerical results shown in Fig.2: shift 
of parametric threshold, finite range in driving amplitude of existence of parametric 
generation and growing of fundamental and second harmonic fields far from the threshold, 
with a different slopes when subharmonic fields are present.  

 First approach confirm that this agreement is not only quantitative but also 
quantitative when the sensitivity of hydrophones is considered, as is shown in Fig.4.  



����������������������������������������

�

�
�

�
�
��
����

�
�

�

�

�

�������������������������������������������

�

�

�

�

�

�
��
���

�

�

�

�

�

���

0 50 100 150 200 250
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Vin

V
n

 
Fig.4. Numerical simulation (continous line) and experimental result (points) for the evolution of first 

(red) and second (blue) subharmonic field in the case correspondig to Fig.1 and Fig.2 
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