PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Toxicity assessment of advanced biological wastewater treatment plant effluent by integrated biomarker response in zebra mussels (Dreissena polymorpha)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, zebra mussels (Dreissena polymorpha) were exposed to advanced biological wastewater treatment plant effluent (ABWTPE) for 96 h. At the end of the 96th hour, antioxidant parameters such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST), malondialdehyde (MDA) and glutathione (GSH) were examined. The objective of the study was to identify biomarkers that are useful for assessing the potential toxic effects of ABWTPE in freshwater environments. We observed an increase in GPX, SOD activity and MDA levels, and a decrease in CAT, GST activity and GSH levels. The results obtained in our study showed that the measured biochemical parameters (GSH, MDA, SOD, CAT, GPX and GST) are useful biomarkers in determining the possible toxicity of ABWTPE in aquatic environments.
Rocznik
Strony
71--78
Opis fizyczny
Bibliogr. 32 poz., tab., wykr.
Twórcy
autor
  • Basic Sciences of Aquatic Products, Munzur University, Tunceli, Türkiye
  • Department of Environmental Engineering, Munzur University, Tunceli, Türkiye
  • Department of Veterinary Medicine, Laboratory and Veterinarian Health Program, Munzur University, Tunceli, Türkiye
Bibliografia
  • [1]. Alves de Almeida, E., Celso Dias Bainy, A., Paula de Melo Loureiro, A., Regina Martinez, G., Miyamoto, S., Onuki, J., Fujita Barbosa, L., Carrião Machado Garcia, C., Manso Prado, F., Eliza Ronsein, G., Alexandre Sigolo, C., Barbosa Brochini, C., Maria Gracioso Martins, A., Helena Gennari de Medeiros, M., & Di Mascio, P. (2007). Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 146(4), 588-600. https://doi.org/10.1016/j.cbpa.2006.02.040 PMID:16626983.
  • [2]. Al-Shahwan, A.A., Balhaddad, A.M.S., Al-Soudani, H.H. O., Nuhu, D.M. & Abdel-Magid, I.M. (2016). Municipal Wastewater Treatment Plants Monitoringand Evaluation: Case study Dammam Metropolitan Area, Part -1 (Environmental Science) Chapter-IMa/Vol.1.0/Issue-I.
  • [3]. Ahmad, I., Hamid, T., Fatima, M., Chand, H. S., Jain, S. K., Athar, M., & Raisuddin, S. (2000). Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochimica et Biophysica Acta, 1523(1), 37-48. https://doi.org/10.1016/S0304-4165(00)00098-2 PMID:11099856.
  • [4]. Bhattacharya, R., Chatterjee, A., Chatterjee, S., & Saha, N. C. (2021). Oxidative stress in benthic oligochaete worm, Tubifex tubifex induced by sublethal exposure to a cationic surfactant cetylpyridinium chloride and an anionic surfactant sodium dodecyl sulfate. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 240, 108906. https://doi.org/10.1016/j.cbpc.2020.108906 PMID:33022380.
  • [5]. Binelli, A., Della Torre, C., Magni, S., & Parolini, M. (2015). Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review. Environmental Pollution, 196, 386-403. https://doi.org/10.1016/j.envpol.2014.10.023 PMID:25463737.
  • [6]. Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239(1-3), 229-246. https://doi.org/10.1016/j.desal.2008.03.020
  • [7]. Carvalho, C. S., Bernusso, V. A., de Araûjo, H. S., Espíndola, E. L. G., & Fernandes, M. N. (2012). Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere, 89(1), 60-69. https://doi.org/10.1016/j.chemosphere.2012.04.013 PMID:22583787.
  • [8]. Chang, T., Wei, B., Wang, Q., He, Y., & Wang, C. (2020). Toxicity assessment of municipal sewage treatment plant effluent by an integrated biomarker response in the liver of crucian carp (Carassius auratus). Environmental Science and Pollution Research International, 27(7), 7280-7288. https://doi.org/10.1007/s11356-019-07463-2 PMID:31883072.
  • [9]. Chatterjee A. Bhattacharya R. Chatterjee S. Saha N.C.(2021). Acute toxicity of organophosphate pesticide profenofos, pyrethroid pesticide λ cyhalothrin and biopesticide azadirachtin and their sublethal effects on growth and oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 242, 108943. https://doi.org/10.1016/j.cbpc.2020.108943 PMID:33220514.
  • [10]. Chang, T., He, Y., Wei, B., Wang, Q., Li, T., Liu, Y., Zhu, S., & Wang T. (2019). Biochemical Responses of Antioxidant Defense System in Crucian Carp (Carassius Auratus) Liver after Exposured To Municipal Sewage Treatment Plant Effluent. IOSR Journal of Environmental Science, Toxicology and Food Technology, 13(5), 01-06. https://doi.org/10.9790/2402-1305010106.10.9790/2402-1305010106
  • [11]. Dong, Z. (2006). The Substrate Recognition and Catalytic Mechanism of the Stimulant of Glutathione Peroxidase. Jilin University.
  • [12]. Gagné, F. (2014). Biochemical ecotoxicology: Principles and methods. Book. Academic Press., 257. Advance online publication. https://doi.org/10.1016/C2012-0-07586-2
  • [13]. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(18), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016 PMID:20870416.
  • [14]. Gunderson, M. P., Pickett, M. A., Martin, J. T., Hulse, E. J., Smith, S. S., Smith, L. A., Campbell, R. M., Lowers, R. H., Boggs, A. S. P., & Guillette, L. J.Jr. (2016). Variations in hepatic biomarkers in American alligators (Alligator mississippiensis) from three sites in Florida, USA. Chemosphere, 155, 180-187. https://doi.org/10.1016/j.chemosphere.2016.04.018 PMID:27111470.
  • [15]. Karataş, F., Öbek, E., & Kamışlı, F. (2009). Antioxidant capacity of Lemna gibba L. exposed to wastewater treatment. Ecological Engineering, 35(8), 1225-1230. https://doi.org/10.1016/j.ecoleng.2009.05.003
  • [16]. Kasai, H. (1997). Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research, 387(3), 147-163. https://doi.org/10.1016/S1383-5742(97)00035-5 PMID:9439711.
  • [17]. Kerambrun, E., Sanchez, W., Henry, F., & Amara, R. (2011). Are biochemical biomarker responses related to physiological performance of juvenile sea bass (Dicentrarchus labrax) and turbot (Scophthalmus maximus) caged in a polluted harbor? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,154(3), 187e195. https://doi.org/10.1016/j.cbpc.2011.05.006.
  • [18]. Kumari, K., Khare, A., & Dange, S. (2014). The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish Labeo rohita. BioMed Research International, 2014, 782493. Advance online publication. https://doi.org/10.1155/2014/782493 PMID:25302308.
  • [19]. Meng, F., Gao, Y., & Zhao, S. (2011). The responses of molecular biomarkers in bivalves to heavy metals in seawater. Periodical of Ocean University of China, 41(5), 100-109.
  • [20]. Manduzio, H., Monsinjon, T., Rocher, B., Leboulenger, F., & Galap, C. (2003). Characterization of an inducible isoform of the Cu/Zn superoxide dismutase in the blue mussel Mytilus edulis. Aquatic Toxicology (Amsterdam, Netherlands), 64(1), 73-83. https://doi.org/10.1016/S0166-445X(03)00026-2 PMID:12820627.
  • [21]. Metcalfe, C., Tindale, K., Li, H., Rodayan, A., & Yargeau, V. (2010). Illicit drugs in Canadian municipal wastewater and estimates of community drug use. Environmental Pollution, 158(10), 3179-3185. https://doi.org/10.1016/j.envpol.2010.07.002 PMID:20667638.
  • [22]. MAP. (2005). Fact Sheets on Marine Pollution Indicators. United Nations Environ-ment. Mediterranean Action PLAN.
  • [23]. Modesto, K. A., & Martinez, C. B. R. (2010). Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere, 78, 294-299. https://doi.org/10.1016/j.chemosphere.2009.10.047 PMID:19910015.
  • [24]. Samanta, P., Im, H., Yoo, J., Lee, H., Kim, N. Y., Kim, W., Hwang, S. J., Kim, W. K., & Jung, J. (2018). Comparative assessment of the adverse outcome of wastewater effluents by integrating oxidative stress and histopathological alterations in endemic fish. Journal of Hazardous Materials, 344, 81-89. https://doi.org/10.1016/j.jhazmat.2017.10.016 PMID:29032097.
  • [25]. Samanta, P., Im, H., Na, J., & Jung, J. (2018). Ecological risk assessment of a contaminated stream using multi-level integrated biomarker response in Carassius auratus. Environmental Pollution, 233, 429-438. https://doi.org/10.1016/j.envpol.2017.10.061 PMID:29100180.
  • [26]. Tatar, S., Yildirim, N. C., Serdar, O., Yildirim, N., & Ogedey, A. (2018). The using of Gammarus pulex as a biomonitor in ecological risk assessment of secondary effluent from municipal wastewater treatment plant in Tunceli, Turkey. Human and Ecological Risk Assessment, 24(3), 819-829. https://doi.org/10.1080/10807039.2017.1400374
  • [27]. Wan, R., Meng, F., Fu, W., Wang, Q. & Su E. (2015). Biochemical responsesinthegillsof Meretrix meretrix after exposure to treated municipal effluent. Ecotoxicology and Environmental Safety, 111, 78-85. https://doi.org/10.1016/j.ecoenv.2014.09.038.
  • [28]. Tetreault, G. R., Kleywegt, S., Marjan, P., Bragg, L., Arlos, M., Fuzzen, M., Smith, B., Moon, T., Massarsky, A., Metcalfe, C., Oakes, K., McMaster, M. E., & Servos, M. R. (2021). Biological responses in fish exposed to municipal wastewater treatment plant effluent in situ. Water Quality Research Journal of Canada, 56(2), 83-99. https://doi.org/10.2166/wqrj.2021.031
  • [29]. Yildirim, N. C., Aksu, O., Tatar, S., & Yildirim, N. (2020). The Use of Astacus leptodactylus (Eschscholtz, 1823) as a Test Species for Toxicity Evaluation of Municipal Wastewater Treatment Plant Effluents. Pollution, 6(1), 35-41. https://doi.org/10.22059/poll.2019.285223.649
  • [30]. Zheng, Q., Feng, M., & Dai, Y. (2013). Comparative antioxidant responses in liver of Carassius auratus exposed to phthalates: An integrated biomarker approach. Environmental Toxicology and Pharmacology, 36(3), 741-749. https://doi.org/10.1016/j.etap.2013.07.008 PMID:23938764.
  • [31]. Van der Oost, R., Goksoyr, A., Celander, M., Heida, H., & Vermeulen, N. P. E. (1996). Biomonitoring of aquatic pollution with feral eel (Anguilla anguilla). II Biomarkers: Pollution-induced biochemical responses. Aquatic Toxicology (Amsterdam, Netherlands), 36(3-4), 189-222. https://doi.org/10.1016/S0166-445X(96)00802-8
  • [32]. WGBEC. (2007). Report of theWorking Group on Biological Effects of Contaminants. International Council for the Exploration of the Sea, ICES WGBEC Report, Copenhagen, Denmark. 18-21.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ac46ca7-8efc-42c5-9865-595d40fdaf06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.