Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Acid mine drainage has always been of global concern, primarily due to its low pH, high concentration of heavy metals and toxic substances, and serious impact on the surrounding environment and ecology of mines. However, the research progress and hotspots in this field of acid mine drainage processing are still unclear. To better understand the research hotspots and trends of acid mine drainage processing from 2004 to 2023, we used CiteSpace bibliometric software to visually analyze 1142 English-language research articles and reviews from the Web of Science core database. Results indicated that this field has received increas-ing attention from researchers worldwide, especially since 2017. The USA and China stand out as major contributors, yet their international collaboration doesn't match South Africa robust partnerships. Strengthening cooperation with other nations should be a priority for both the USA and China. The University of Quebec and University of South Africa were the most production institution. Vhahangwele Masindi from South Africa was the most active author. The top two core journals in this field were Science of the Total Environment and Water Research. Additionally, through keyword cooccurrence, clustering, and burst analysis, it is evident that research on heavy metal mechanisms and resource recovery will be the future research hotspots in this field of acid mine drainage. This study provides researchers with an opportunity to understand the hotspots and trends in acid mine drainage research from a bibliometric perspective, and serves as a reference for future studies.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
104--115
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
- Guizhou Mining Safety Science Research Institute Co., Ltd., No. 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
autor
- Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
- Guizhou Mining Safety Science Research Institute Co., Ltd., No. 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
Bibliografia
- 1. Agboola, O. (2019). The role of membrane technology in acid mine water treatment: a review. Korean Journal of Chemical Engineering, 36(9), pp. 1389-1400. DOI:10.1007/s11814-019-0302-2
- 2. Ali, I., Basheer, A. A., Mbianda, X.Y., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A. & Grachev, V. (2019). Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environment International, 127: pp. 160-180. DOI:10.1016/j.envint.2019.03.029
- 3. Anawar, H. M. (2015). Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. Journal of Environmental Management, 158: pp. 111-121. DOI:10.1016/j.jenvman.2015.04.045
- 4. Anekwe, I.M.S. & Isa, Y.M. (2023). Bioremediation of acid mine drainage-Review. Alexandria Engineering Journal, 65, pp. 1047-1075. DOI:10.1016/j.aej.2022.09.053
- 5. Aydin, M.I., Yuzer, B., Hasancebi, B. & Selcuk, H. (2019). Application of electrodialysis membrane process to recovery sulfuric acid and wastewater in the chalcopyrite mining industry. Desalination and Water Treatment, 172, pp. 206-211. DOI:10.5004/dwt.2019.25051
- 6. Azapagic, A. (2004). Developing a framework for sustainable development indicators for the mining and minerals industry. Journal of Cleaner Production, 12(6), pp. 639-662. DOI:10.1016/s0959-6526(03)00075-1
- 7. Benassi, J.C., Laus, R., Geremias, R., Lima, P.L., Menezes, C.T.B., Laranjeira, M.C.M., Wilhelm-Filho, D., Fávere, V.T.R. & Pedrosa, C. (2006). Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers. Archives of Environmental Contamination and Toxicology, 51(4), pp. 633-640. DOI:10.1007/s00244-005-0187-4
- 8. Bogush, A. A. & Voronin, V. G. (2011). Application of a Peat-humic Agent for Treatment of Acid Mine Drainage. Mine Water and the Environment, 30(3), pp. 185-190. DOI:10.1007/s10230-010-0132-2
- 9. Chen, C. M. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp. 359-377. DOI:10.1002/asi.20317
- 10. Chen,G., Ye, Y., Yao, N., Hu, N., Zhang, J. &Huang, Y. (2021). A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. Journal of Cleaner Production 329(20), pp. 1-21. DOI:10.1016/j.jclepro.2021.129666
- 11. Edgar, G.J., Stuart-Smith, R.D., Willis, T.J., Kininmonth, S., Baker, S.C., Banks, S., Barrett, N.S., Becerro, M.A., Bernard, A.T.F., Berkhout, J., Buxton, C.D., Campbell, S.J., Cooper, A.T., Davey, Edgar, S.C., Försterra, G., Galván, D.E., Irigoyen, A.J., Kushner, D.J., Moura, R., Parnell, P.E., Shears, N.T., Soler, G., Strain, E.M.A. & Thomson, RJ. (2014). Global conservation outcomes depend on marine protected areas with five key features. Nature 506(7487), pp. 216-220. DOI:10.1038/nature13022
- 12. He, Y., Lan, Y., Zhang, H. & Ye, S. (2022). Research characteristics and hotspots of the relationship between soil microorganisms and vegetation: A bibliometric analysis. Ecological Indicators, 141, pp. 1-15. DOI:10.1016/j.ecolind.2022.109145
- 13. Jiao, Y., Zhang, C., Su, P., Tang, Y., Huang, Z. & Ma, T. (2023). A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection, 170, pp. 1240-1260. DOI:10.1016/j.psep.2022.12.083
- 14. Johnson, D. B. & Hallberg, K.B. (2005). Acid mine drainage remediation options: a review. Science of The Total Environment, 338(1), pp. 3-14. DOI:10.1016/j.scitotenv.2004.09.002
- 15. Joshiba, G.J., Kumar, P.S., Govarthanan, M., Ngueagni, P.T., Abilarasu, A. & Carolin, F. (2021). Investigation of magnetic silica nanocomposite immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of Rhodamine B from aqueous systems. Environmental Pollution 269. DOI:10.1016/j.envpol.2020.11617316
- 16. Kiiskila, J.D., Li, K., Sarkar, D. & Datta, R. (2020). Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage. Chemosphere, 240, 124961. DOI:10.1016/j.chemosphere.2019.124961
- 17. Lazareva, E.V., Myagkaya, I.N., Kirichenko, I.S., Gustaytis, M.A. & Zhmodik, S.M. (2019). Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. Science of The Total Environment, 660, pp. 468-483. DOI:10.1016/j.scitotenv.2018.12.467
- 18. Xiao, L. (2008). Experimental research using passive treatment technology SAPS to treat acidic mine waste water. Journal of Water Resources and Water Engineering, 19(2). https://api.semanticscholar.org/CorpusID:113361846
- 19. Liu, Y., Xie, X., Wang, S., Hu, S., Wei, L., Wu, Q., Luo, D. & Xiao, T. (2023). Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China). Journal of Contaminant Hydrology, 259. DOI:10.1016/j.jconhyd.2023.104254
- 20. Lo, S-F., Wang, S-Y., Tsai, M-J. & Lin, L-D. (2012). Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research & Design, 90(9), pp. 1397-1406. DOI:10.1016/j.cherd.2011.11.020
- 21. Masindi, V., Akinwekomi, V., Maree, J.P. & Muedi, K.L. (2017). Comparison of mine water neutralisation efficiencies of different alkaline generating agents. Journal of Environmental Chemical Engineering, 5(4), pp. 3903-3913. DOI:10.1016/j.jece.2017.07.062
- 22. Masindi, V., Foteinis, S. & Chatzisymeon, E. (2022). Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. Journal of Hazardous Materials, 421. DOI:10.1016/j.jhazmat.2021.126677
- 23. Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree, J.P., Tekere, M. & Chatzisymeon, E. (2022). Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological Engineering, 183, 106740. DOI:10.1016/j.ecoleng.2022.106740
- 24. McCauley, C.A., O'Sullivan, A.D., Milke, M.W., Weber, P.A. & Trumm, D.A. (2009). Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Research, 43(4), pp. 961-970. DOI:10.1016/j.watres.2008.11.029
- 25. Ming, C. J. M. M. (2006). Research on Sulfidization-Precipitation-High Concentration Pulping Treatment of Copper-Containing Acid Mine Drainage. Metal Mine.
- 26. Motsi, T., Rowson, N.A. & Simmons, M.J.H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1-2), pp. 42-48. DOI:10.1016/j.minpro.2009.02.005
- 27. Mzinyane, N. N. (2022). Adsorption of heavy metals from acid mine drainage using poly (hydroxamic acid) ligand. South African Journal of Chemical Engineering, 42, pp. 318-336. DOI:10.1016/j.sajce.2022.09.007
- 28. Nageshwari, K. & Balasubramanian, P. (2022). Evolution of struvite research and the way forward in resource recovery of phosphates through scientometric analysis. Journal of Cleaner Production, 357. DOI:10.1016/j.jclepro.2022.131737
- 29. Nishimoto, N., Yamamoto, Y., Yamagata, S., Igarashi, T. & Tomiyama, S. (2021). Acid Mine Drainage Sources and Impact on Groundwater at the Osarizawa Mine, Japan. Minerals 11(9). DOI:10.3390/min11090998
- 30. Núñez-Gómez, D., Rodrigues, C., Lapolli, F.R. & Lobo-Recio, M.A. (2019). Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 7(1). DOI:10.1016/j.jece.2018.11.032
- 31. Ouyang, W., Wang, Y., Lin, C., He, M., Hao, F., Liu, H. & Zhu, W. (2018). Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Science of the Total Environment, 637, pp. 208-220. DOI:10.1016/j.scitotenv.2018.04.434
- 32. Pagnanelli, F., De Michelis, I., Di Muzio, S., Ferella, F. & Vegliò, F. (2008). Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage. Journal of Hazardous Materials, 159(2-3), pp. 567-573. DOI:10.1016/j.jhazmat.2008.02.067
- 33. Papirio, S., Villa-Gomez, D.K., Esposito, G., Pirozzi, F. & Lens, P.N.L. (2013). Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Critical Reviews in Environmental Science and Technology, 43(23), pp. 2545-2580. DOI:10.1080/10643389.2012.694328
- 34. Prasad, B. & Mortimer, R. J. G. (2011). Treatment of Acid Mine Drainage Using Fly Ash Zeolite. Water Air and Soil Pollution, 218(1-4), pp. 667-679. DOI:10.1007/s11270-010-0676-6
- 35. Qin, F., Zhu, Y., Ao, T. & Chen, T. (2021). The Development Trend and Research Frontiers of Distributed Hydrological Models-Visual Bibliometric Analysis Based on Citespace. Water, 13(2), 174. DOI:10.3390/w13020174
- 36. Qureshi, A., Jia, Y., Maurice, C. & Öhlander, B. (2016). Potential of fly ash for neutralisation of acid mine drainage. Environmental Science and Pollution Research, 23(17), pp. 17083-17094. DOI:10.1007/s11356-016-6862-3
- 37. Rahman, M.L., Wong, Z.J., Sarjadi, M.S., Abdullah, M.H., Heffernan, M.A., Sarkar, M.S. & O'Reilly, E. (2021). Poly(hydroxamic acid) ligand from palm-based waste materials for removal of heavy metals from electroplating wastewater. Journal of Applied Polymer Science, 138(2). DOI: 10.1002/app.49671
- 38. Ren, J., Zheng, L., Su, Y., Meng, P., Zhou, Q., Zeng, H., Zhang, T. & Yu, H. (2022). Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chemical Engineering Journal, 445, 136778. DOI:10.1016/j.cej.2022.136778
- 39. Sephton, M.G., Webb, J.A. & McKnight, S. (2019). Applications of Portland cement blended with fly ash and acid mine drainage treatment sludge to control acid mine drainage generation from waste rocks. Applied Geochemistry, 103, pp. 1-14. DOI:10.1016/j.apgeochem.2019.02.005
- 40. Si, M., Chen, Y., Li, C., Lin, Y., Huang, J., Zhu, F., Tian, S. & Zhao, Q. (2023). Recent Advances and Future Prospects on the Tailing Covering Technology for Oxidation Prevention of Sulfide Tailings. Toxics, 11(1), 13. DOI:10.3390/toxics11010011
- 41. Sierra-Alvarez, R., Karri, S., Freeman, S. & Field, J.A. (2006). Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors. Water Science and Technology, 54(2), pp. 179-185. DOI:10.2166/wst.2006.502
- 42. Skousen, J.G., Ziemkiewicz, P.F. & McDonald, L.M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), pp. 241-249. DOI:10.1016/j.exis.2018.09.008
- 43. Tabelin, C.B., Park, I., Phengsaart, T., Jeon, S., Villacorte-Tabelin, M., Alonzo, D., Yoo, K., Ito, M. & Hiroyoshi, N. (2021). Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling, 170, 105610. DOI:10.1016/j.resconrec.2021.105610
- 44. Tabelin, C.B., Veerawattananun, S., Ito, M., Hiroyoshi, N. & Igarashi, T. (2017). Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Science of the Total Environment, 580, pp. 687-698. DOI:10.1016/j.scitotenv.2016.12.015
- 45. Le, T., Fan,R., Yang, S. & Li, C. (2021). Development and Status of the Treatment Technology for Acid Mine Drainage. Mining Metallurgy & Exploration, 38(1), pp. 315-327. DOI:10.1007/s42461-020-00298-3
- 46. Tyulenev, M.A., Gvozdkova, T.N., Zhironkin, S.A. & Garina, E.A. (2017). Justification of Open Pit Mining Technology for Flat Coal Strata Processing in Relation to the Stratigraphic Positioning Rate. Geotechnical and Geological Engineering, 35(1), pp. 203-212. DOI:10.1007/s10706-016-0098-3
- 47. Varvara, S., Popa, M., Bostan, R. &Damian, G. (2013). Preliminary considerations on the adsorption of heavy metals from acidic mine drainage using natural zeolite. Journal of Environmental Protection and Ecology, 14(4), pp. 1506-1514.
- 48. Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S. & Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, 126539. DOI:10.1016/j.chemosphere.2020.126539
- 49. Yan, T., Xue, J., Zhou, Z. & Wu, Y. (2020). The trends in research on the effects of biochar on soil. Sustainability, 12(18). DOI: 10.3390/su12187810
- 50. Yang, M., Lu, C., Quan, X. & Cao, D. (2021). Mechanism of Acid Mine Drainage Remediation with Steel Slag: A Review. Acs Omega, 6(45), pp. 30205-30213. DOI:10.1021/acsomega.1c03504
- 51. Zhang, W., Yang, J., Sheng, P., Li, X. & Wang, X. (2014). Potential cooperation in renewable energy between China and the United States of America. Energy Policy, 75, pp. 403-409. DOI: 10.1016/j.enpol.2014.09.016
- 52. Zhang, Y., Han, C., Zhang, G., Dionysiou, D.D. & Nadagouda, M.N. (2015). PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chemical Engineering Journal, 268, pp. 170-179. DOI:10.1016/j.cej.2015.01.006
- 53. Zhao,Y., Fu,Z., Chen, X. & Zhang, G. (2018). Bioremediation process and bioremoval mechanism of heavy metal ions in acidic mine drainage. Chemical Research in Chinese Universities, 34(1), pp. 33-38. DOI:10.1007/s40242-018-7255-6
- 54. Zhou, X. & Zhao, G. (2015). Global liposome research in the period of 1995-2014: a bibliometric analysis. Scientometrics, 105(1), pp. 231-248. DOI:10.1007/s11192-015-1659-6
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ab4dd3b-3263-4c34-abef-c61b3969fb84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.