PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The depression mechanism on pyrite in a low-alkaline system with combined depressants : Experiment, HSC, DFT and ToF-SIMS studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Depression of pyrite in a low-alkaline system has sparked soaring interests for the multi-metal sulfide minerals flotation recently. This study investigates effects of combined depressants (Ca(ClO)2 and CaO) on pyrite flotation with butyl xanthate (KBX). Micro-flotation experiments indicate that the addition of 200 mg/L combined depressants (a mass ratios of CaO to Ca(ClO) 2 of 2:3) and 1.0×10−3 mol/L KBX at pH 9.5 can effectively depresses the flotation of pyrite, and a minimum pyrite recovery rate of 12.5% is obtained. Basic thermodynamic evaluation results confirm the participation of Ca(ClO) 2 significantly decrease the negative Gibbs free energies of pyrite oxidation reaction. Besides, the calcium species (Ca(OH) 2, Ca2+ and Ca(Cl) 2) will spontaneously transform into CaCO3,and it is the ultimate dominant calcium species in the CO32- system. Density functional theory (DFT) results indicate that CaCO3 can chemically adsorb onto the pyrite surface with an adsorption energy of -671.13 kJ/mol. The O1 and Ca atoms mainly contribute to the bonding process and are responsible for the stable adsorption of CaCO3. ToF-SIMS results provide strong evidence that the combined depressants increase the amount of hydrophilic species and decrease dixanthogen adsorption onto the pyrite surface. The thickness of the whole formed hydrophilic species is approximately 50 nm. Semiquantitative amounts of hydrophilic species follow the order of hydroxy calcium>iron carbonyl>calcium carbonate. Overall, hydrophilic species repulse adsorption of dixanthogen and significantly reduce the flotation performance of pyrite.
Słowa kluczowe
Rocznik
Strony
art. no. 168454
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, China
Bibliografia
  • AHMADI, A.,RANJBAR, M. ,SCHAFFIE, M. 2012. Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems. Minerals Engineering. 34, 11-18
  • AI, G.,ZHOU, Y. ,WANG, Y. 2015. A Study on the Combined Depressant for the Cu-S Separation in Low Alkaline Medium and its Depressing Mechanism. Procedia Engineering. 102, 338-345
  • BAI, S.,BI, Y.,LI, J.,YU, P.,DING, Z.,LV, C. ,WEN, S. 2021. Innovative utilization of acid mine drainage (AMD): A promising activator for pyrite flotation once depressed in a high alkali solution (HAS)–Gearing towards a cleaner production concept of copper sulfide ore. Minerals Engineering. 170,
  • BAI, S.,WEN, S.,XIAN, Y.,LIU, J. ,DENG, J. 2013. New source of unavoidable ions in galena flotation pulp: Components released from fluid inclusions. Minerals Engineering. 45, 94-99
  • BAI, S.,YU, P.,LI, C.,WEN, S. ,DING, Z. 2019. Depression of pyrite in a low-alkaline medium with added calcium hypochlorite:Experiment, visual MINTEQ models, XPS, and ToF–SIMS studies. Minerals Engineering. 141,
  • BARKER, G.J.,GERSON, A.R. ,MENUGE, J.F. 2014. The impact of iron sulfide on lead recovery at the giant Navan Zn–Pb orebody, Ireland. International Journal of Mineral Processing. 128, 16-24
  • BONNISSEL-GISSINGER, P.,ALNOT, M.,EHRHARDT, J.J. ,BEHRA, P. 1998. Surface Oxidation of Pyrite as a Function of pH. Environ.sci.technol. 32(19), 2839-2845
  • BULUT, G.,YENIAL, Ü.,EMIROĞLU, E. ,SIRKECI, A.A. 2014. Arsenic removal from aqueous solution using pyrite. Journal of Cleaner Production. 84, 526-532
  • BUNKHOLT, I. ,KLEIV, R.A. 2015. Flotation of pyrrhotite and pyrite in saturated CaCO3 solution using a quaternary amine collector. Minerals Engineering. 70, 55-63
  • CHANDRA, A.P. ,GERSON, A.R. 2010. The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surface Science Reports. 65(9), 293-315
  • CHEN, J.,LI, Y. ,CHEN, Y. 2011. Cu–S flotation separation via the combination of sodium humate and lime in a low pH medium. Minerals Engineering. 24(1), 58-63
  • DENG, J.,WEN, S.,XIAN, Y.,LIU, J. ,BAI, S. 2013. New discovery of unavoidable ions source in chalcopyrite flotation pulp: Fluid inclusions. Minerals Engineering. 42, 22-28
  • DICHMANN, T.K. ,FINCH, J.A. 2001. The role of copper ions in sphalerite-pyrite flotation selectivity.
  • DING, Z.,BI, Y.,LI, J.,YUAN, J.,DAI, H. ,BAI, S. 2022. Flotation separation of chalcopyrite and pyrite via Fenton oxidation modification in a low alkaline acid mine drainage (AMD) system. Minerals Engineering. 187,
  • EKMEKCI, Z. ,DEMIREL, H. 1997. Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite. International Journal of Mineral Processing. 52(1), 31-48
  • FERREIRA, H.M.,LOPES, E.B.,MALTA, J.F.,FERREIRA, L.M.,CASIMIRO, M.H.,SANTOS, L.F.,PEREIRA, M.F.C.,MOçO, D. ,GONçALVES, A.P. 2021. Preparation and densification of bulk pyrite, FeS2. Journal of Physics and Chemistry of Solids. 159,
  • FINKELSTEIN, N.P. 1997. Addendum to: The activation of sulphide minerals for flotation: A review. International Journal of Mineral Processing. 55(4), 81-120
  • GUO, B.,PENG, Y. ,PARKER, G. 2016. Electrochemical and spectroscopic studies of pyrite–cyanide interactions in relation to the depression of pyrite flotation. Minerals Engineering. 92, 78-85
  • HUANG, P.,CAO, M. ,LIU, Q. 2013. Selective depression of pyrite with chitosan in Pb–Fe sulfide flotation. Minerals Engineering. 46-47, 45-51
  • HUNG, A.,MUSCAT, J.,YAROVSKY, I. ,RUSSO, S.P. 2002. Density-functional theory studies of pyrite FeS2(1 0 0) and (1 1 0) surfaces. Surface Science. 513(3), 511-524
  • JANETSKI, N.D.,WOODBURN, S.I. ,WOODS, R. 1977. An electrochemicalinvestigation of pyrite flotation and depression. International Journal of Mineral Processing. 4(3), 227-239
  • JIANG, K.,LIU, J.,WANG, Y.,ZHANG, D. ,HAN, Y. 2023. Surface properties and flotation inhibition mechanism of air oxidation on pyrite and arsenopyrite. Applied Surface Science. 610,
  • JIN, S.,SHI, Q.,FENG, Q.,ZHANG, G. ,CHANG, Z. 2018. The role of calcium and carbonate ions in the separation of pyrite and talc. Minerals Engineering. 119, 205-211
  • KHOSO, S.A.,HU, Y.-H.,LÜ, F.,GAO, Y.,LIU, R.-Q. ,SUN, W. 2019. Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite. Transactions of Nonferrous Metals Society of China. 29(12), 2604-2614
  • LI, Y.,CHEN, J.,KANG, D. ,GUO, J. 2012. Depression of pyrite in alkaline medium and its subsequent activation by copper. Minerals Engineering. 26, 64-69
  • LIAO, R.-P.,HU, P.-J.,WEN, S.-M.,ZHENG, Y.-X.,QIU, X.-H.,LÜ, J.-F. ,LIU, J. 2022. Interaction mechanism of ferrate(VI) with arsenopyrite surface and its effect on flotation separation of chalcopyrite from arsenopyrite. Transactions of Nonferrous Metals Society of China. 32(11), 3731-3743
  • LIU, R.,GUO, Y.,WANG, L.,SUN, W.,TAO, H. ,HU, Y. 2015. Effect of calcium hypochlorite on the flotation separation of galena and jamesonite in high-alkali systems. Minerals Engineering. 84, 8-14
  • LóPEZ VALDIVIESO, A.,CELEDóN CERVANTES, T.,SONG, S.,ROBLEDO CABRERA, A. ,LASKOWSKI, J.S. 2004. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Minerals Engineering. 17(9-10), 1001-1006
  • MKHONTO, P.P.,ZHANG, X.,LU, L.,XIONG, W.,ZHU, Y.,HAN, L. ,NGOEPE, P.E. 2022. Adsorption mechanisms and effects of thiocarbamate collectors in the separation of chalcopyrite from pyrite minerals: DFT and experimental studies. Minerals Engineering. 176,
  • MU, Y.,PENG, Y. ,LAUTEN, R.A. 2016a. The depression of pyrite in selective flotation by different reagent systems –A Literature review. Minerals Engineering. 96-97, 143-156
  • MU, Y.,PENG, Y. ,LAUTEN, R.A. 2016b. The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions. Minerals Engineering. 92, 37-46
  • PECINA, E.T.,URIBE, A.,NAVA, F. ,FINCH, J.A. 2006. The role of copper and lead in the activation of pyrite in xanthate and non-xanthate systems. Minerals Engineering. 19(2), 172-179
  • PENG, Y.,WANG, B. ,GERSON, A. 2012. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. International Journal of Mineral Processing. 102-103, 141-149
  • SHEN,W.Z.,FORNASIERO, D. ,RALSTON, J. 1998. Effect of collectors, conditioning pH and gases in the separation of sphalerite from pyrite. Minerals Engineering. 11(2), 145-158
  • WANG, X.H. ,FORSSBERG, K. 2002. Mechanisms of pyrite flotation with xanthates. International Journal of Mineral Processing. 33(1-4), 275-290
  • WANG, Z.-J.,XU, L.-H.,WU, H.-Q.,ZHOU, H.,MENG, J.-P.,HUO, X.-M. ,HUANG, L.-Y. 2021. Adsorption of octanohydroxamic acid at fluorite surface in presence of calcite species. Transactions of Nonferrous Metals Society of China. 31(12), 3891-3904
  • WANG, Z.,QIAN, Y.,XU, L.-H.,DAI, B.,XIAO, J.-H. ,FU, K. 2015. Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant. Minerals Engineering. 74, 86-90
  • YANG, X.,BORIS, A.,LIU, G. ,ZHOU,Y. 2018. Structure–activity relationship of xanthates with different hydrophobic groups in the flotation of pyrite. Minerals Engineering. 125, 155-164
  • YIN, W.,YANG, B.,FU, Y.,CHU, F.,YAO, J.,CAO, S. ,ZHU, Z. 2019. Effect of calcium hypochlorite on flotation separation of covellite and pyrite. Powder Technology. 343, 578-585
  • ZANIN, M.,LAMBERT, H. ,DU PLESSIS, C.A. 2019. Lime use and functionality in sulphide mineral flotation: A review. Minerals Engineering. 143,
  • ZHANG, Q.,WEN, S.,ZUO, Q. ,FENG, Q. 2023. Density functional theory calculation of catalytic sulfidization on the azurite (0 1 1) surface by ammonium salts and its effect on flotation. Separation and Purification Technology. 309,
  • ZHANG, R.,ZHUO, J.,MAO, Y.,WAN, Q. ,ZHAO, H. 2022. Effects of different inorganic oxidizers on removal of xanthate pre-adsorbed on chalcopyrite surface: An effective approach for flotation depression using KMnO4. Minerals Engineering. 184,
  • ZHAO, G.,FANG, X. ,ZHANG, Y. 2023. Selective flotation of pyrite from serpentine using phytic acid as the depressant. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 658
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ab0d2f5-cb92-41c8-92c3-997041277299
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.