PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust optimization of gradient RP HPLC method for simultaneous determination of ivabradine and its eleven related substances by AQbD approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is aimed at developing a gradient elution reversed-phase high-performance liquid chromatography (RP-HPLC) method for the separation of a complex mixture composed of ivabradine and its eleven impurities, in a reasonable timeframe. In order to obtain a robust and reliable HPLC method for separation of this mixture, Analytical Quality by Design (AQbD) was applied. This approach demonstrated to be useful in development of a long lasting life cycle methods. Four chromatographic variables were defined as key method parameters (KMPs) and optimized towards the analytical target profile (ATP). Designated KMPs were initial and final amount of acetonitrile in the mobile phase, pH value of the aqueous phase and gradient time, while resolutions of critical peak pairs were denoted as critical method attributes (CMAs). Relationships between KMPs and CMAs were obtained with the aid of Design of Experiments (DoEs) methodology among which Box-Behnken design (BBD) was employed to gain valid mathematical models. Obtained mathematical equations were used to construct the Design Space (DS) and select reliable optimal separation conditions. They included 11% (v/v) and 34% (v/v) of initial and final amount of acetonitrile, respectively, as well as 45 min of gradient elution time and 20 mM ammonium acetate as aqueous mobile phase with pH set to 7.35. The possibility to separate the diastereoisomers of impurity X was also evaluated. It was demonstrated that this separation could not be achieved in gradient elution mode within the defined variable domains and in a reasonable time span. The developed method was validated according to ICH Q2 (R1) guideline and met all the required criteria.
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11 152, Belgrade, Serbia
  • Department of Drug Analysis, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11 221Belgrade, Serbia
  • Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11 152, Belgrade, Serbia
  • Department of Drug Analysis, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11 221Belgrade, Serbia
  • Department of Drug Analysis, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11 221Belgrade, Serbia
autor
  • Department of Drug Analysis, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11 221Belgrade, Serbia
Bibliografia
  • 1. Andrikopoulos, G.; Dasopoulou, C.; Sakellariou, D.; Tzeis, S.; Koulouris, S.; Kranidis, A; Kappos, K.; Manolis, A.S. Ivabradine: a selective if current inhibitor in the treatment of stable angina. Rec. Patents Cardiovasc. Drug Discov. 2006, 1(3), 277–82.
  • 2. Su, J. B. Cardioprotective effects of the if current inhibition by ivabradine during cardiac dysfunction. Curr. Pharm. Biotechnol. 2013, 14(14), 1213–9.
  • 3. Klippert, P. , Jeanniot, J.-P. , Polvé, S. , Lefèvre, C. , Merdjan, H. Determination of ivabradine and its N-demethylated metabolite in human plasma and urine, and in rat and dog plasma by a validated high-performance liquid chromatographic method with fluorescence detection. J. Chromatogr. B: Biomed. Sci. Appl. 1998, 719(1–2), 125–233.
  • 4. Lu, C.; Jia, Y., Yang, J.; Jin, X.; Song, Y.; Liu, W.; Dinga, Y.; Sun, X.; Wena, A. Simultaneous determination of ivabradine and N-desmethylivabradine in human plasma and urine using a LC-MS/MS method: application to a pharmacokinetic study. Acta Pharmac. Sinica B 2012, 2(2), 205–12.
  • 5. François-Bouchard, M.; Simonin, G.; Bossant, M.-J.; Boursier-Neyret, C. Simultaneous determination of ivabradine and its metabolites in human plasma by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B: Biomed. Sci. Appl. 2000, 745(2), 261–9.
  • 6. Sun, W.; Chen, R.; Li, W.; Zhang, H.; Ye, J.; Cui, X.; Huang, C. Simultaneous determination of ivabradine, metoprolol and their metabolites in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry and its application in a pharmacokinetic study. Anal. Methods 2015, 7(19), 8459–65.
  • 7. Zoerner, A. A.; Schroeder, C.; Kayacelebi, A. A.; Suchy, M. T.; Gutzki, F.-M.; Stichtenoth, D. O.; Tank, J.; Jordan, J.; Tsikas, D. A validated, rapid UPLC–MS/MS method for simultaneous ivabradine, reboxetine, and metoprolol analysis in human plasma and its application to clinical trial samples. J. Chromatogr. B 2013, 927, 105–11.
  • 8. Damle, M.; Bagwe, R. Development and validation of stabilityindicating HPTLC method for ivabradine HCl. Pharm. Sci. Monitor 2015, 6(1), 141–52.
  • 9. Nowakowska, J.; Pikul, P.; Marszałł, M.; Ciura, K. Application and validation of simple isocratic HPLC-UV-DAD method with dual wavelength detection for Ivabradine determination and its application in the study of stress degradation. J. Chem. 2017, 2017.
  • 10. Maheshwari, S.; Khandhar, A. P.; Jain, A. Quantitative determination and validation of ivabradine HCl by stability indicating RPHPLC method and spectrophotometric method in solid dosage form. Eurasian J. Anal. Chem. 2010, 5(1), 53–62.
  • 11. Patel, P. N.; Borkar, R. M.; Kalariya, P. D.; Gangwal, R. P.; Sangamwar, A. T.; Samanthula, G.; Ragampeta, S. Characterization of degradation products of Ivabradine by LC-HR-MS/MS: a typical case of exhibition of different degradation behaviour in HCl and H2SO4 acid hydrolysis. J. Mass Spectrom. 2015, 50(2), 344–53.
  • 12. Pikul, P. ; Jamrógiewicz, M. ; Nowakowska, J. ; Hewelt-Belka, W. ; Ciura, K. Forced degradation studies of ivabradine and in silico toxicology predictions for its new designated impurities. Front. Pharmacol. 2016, 7, 117.
  • 13. Gangrade, D.; D’Souza, J. A simple and sensitive RP-HPLC method for trace-level quantification of methyl vinyl-ketone, a potential genotoxic impurity, in drug substances. Int. J. Pharm. Sci. Res. 2017, 8(2), 706.
  • 14. Tomić, J. ; Ivković, B. ; Oljačić, S. ; Nikolić, K. ; Maljurić, N. ; Protić, A. ; Agbaba, D. Chemometrically assisted RP-HPLC method development for efficient separation of ivabradine and its eleven impurities. Acta Chromatogr. 2019, 1–11.
  • 15. Kochling, J.; Wu, W.; Hua, Y.; Guan, Q.; Castaneda-Merced, J. A platform analytical quality by design (AQbD) approach for multiple UHPLC-UV and UHPLC–MS methods development for protein analysis. J. Pharm. Biomed. Anal. 2016, 125, 130–9.
  • 16. Dispas, A.; Avohou, H. T.; Lebrun, P.; Hubert, P.; Hubert, C. ‘Quality by Design’approach for the analysis of impurities in pharmaceutical drug products and drug substances. Trac Trends Anal. Chem. 2018, 101, 24–33.
  • 17. Vogt, F. G.; Kord, A. S. Development of quality-by-design analytical methods. J. Pharm. Sci. 2011, 100(3), 797–812.
  • 18. Reid, G. L.; Morgado, J.; Barnett, K.; Harrington, B.; Wang, J.; Harwood, J.; Fortin, D. Analytical quality by design (AQbD) in pharmaceutical development. Am. Pharm. Rev. 2013, 144191.
  • 19. ICH of Techical Requirements for Registration of Pharmaceuticals for Human Use; Q8 R2 Pharmaceutical Development, http://www.ich.org/fileadmin/Public Web Site/ICH Products/Guidelines/Quality/Q8 RI/Step4/Q8 R2 Guidelines [cited accessed June 2011].
  • 20. Orlandini, S.; Pasquini, B.; Stocchero, M.; Pinzauti, S.; Furlanetto, S. An integrated quality by design and mixture-process variable approach in the development of a capillary electrophoresis method for the analysis of almotriptan and its impurities. J. Chromatogr. A 2014, 1339, 200–9.
  • 21. Rozet, E.; Lebrun, P.; Hubert, P.; Debrus, B.; Boulanger, B. Design spaces for analytical methods. Trac Trends Anal. Chem. 2013, 42, 157–67.
  • 22. International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use; Topic Q9: Quality risk management. Federal Register: Geneva, Switzerland. 2006, 71(106), 32105–6.
  • 23. International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use; Topic Q10: Pharmaceutical Quality System. Federal Register: Geneva, Switzerland. 2009, 74(66), 15990–1.
  • 24. Kazakevich, Y.; LoBrutto, R.; Chan, F.; Patel, T. Interpretation of the excess adsorption isotherms of organic eluent components on the surface of reversed-phase adsorbents: effect on the analyte retention. J. Chromatogr. A 2001, 913(1–2), 75–87.
  • 25. Vemić, A. ; Stojanović, B. J. ; Stamenković, I. ; Malenović, A. Chaotropic agents in liquid chromatographic method development for the simultaneous analysis of levodopa, carbidopa, entacapone and their impurities. J. Pharm. Biomed. Anal. 2013, 77, 9–15.
  • 26. Snyder, L. R.; Kirkland, J. J.; Dolan, J. W. Introduction to Modern Liquid Chromatography; John Wiley & Sons, 2011.
  • 27. Šljivić, J. ; Protić, A. ; Malenović, A. ; Otašević, B. ; Zečević, M . Simple and efficient solution for robustness testing in gradient elution liquid chromatographic methods. Chromatographia 2018, 81(8), 1135–1145.
  • 28. Klein, E. J.; Rivera, S. L. A review of criteria functions and response surface methodology for the optimization of analytical scale HPLC separations. J. Liquid Chromatogr. Related Technol., 2000, 23(14), 2097–121.
  • 29. Vanbilloen, H.; Cleynhens, B.; De Groot, T.; Maes, A.; Bormans, G.; Verbruggen, A. RP-HPLC separation of the diastereomers of technetium-99m labelled tropanes and identity confirmation using radio-LC-MS. J. Pharm. Biomed. Anal. 2003, 32(4–5), 663–8.
  • 30. Ding, T.-m.; Tian, S.-j.; Zhang, Z.-x.; Gu, D.-z.; Chen, Y.-f.; Shi, Y.- h.; Sun, Z. Determination of active component in silymarin by RPLC and LC/MS. J. Pharm. Biomed. Anal. 2001, 26(1), 155–61.
  • 31. Nagai, T.; Kurosu, A.; Matsushima, K.; Maeda, J.; Tohei, A.; Yamauchi, S.; Hitosugi, M.; Tokudome, S. Simultaneous identification of the enantiomers and diastereomers of N, O-Di-trifluoroacetylated ephedrine and norephedrine in blood plasma using chiral capillary gas chromatography–mass spectrometry with selected ion monitoring. J. Anal. Toxicol. 2012, 36(2), 96–105.
  • 32. Guideline ICH. Q2 (R1). Validation of Analytical Procedures: Text and Methodology, 2005.
  • 33. Ermer, J.; Miller, J. H. M. Method Validation in Pharmaceutical Analysis: A Guide to Best Practice; John Wiley & Sons, 2006.
  • 34. Ahuja, S.; Scypinski, S. Handbook of Modern Pharmaceutical Analysis; Academic Press, 2010.
  • 35. Fifield, F. W.; Kealey, D. Principles and Practice of Analytical Chemistry; Blackwell Science Ltd, 2000.
  • 36. Harris, D. C. Quantitative Chemical Analysis; Macmillan, 2010.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5aa56b13-9283-4f29-912b-6c569ccd5c79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.