PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of selected mathematical models of high-cycle S-N characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents two approaches of determining S-N fatigue characteristics. The first is a commonly used and well-documented approach based on the least squares method and staircase method for limited fatigue life and fatigue limit, accordingly. The other approach employs the maximum likelihood method. The analysis of the parameters obtained through both approaches exhibited minor differences. The analysis was performed for four steel construction materials, i.e. C45+C, 45, SUS630 and AISI 1045. It should be noted that the quantity of samples required in the second approach is significantly smaller than with the first approach, which translates into lower duration and costs of tests.
Rocznik
Tom
Strony
227--240
Opis fizyczny
Bibliogr. 31 poz. rys., tab., wykr.
Twórcy
  • Zakład Metod Komputerowych, Instytut Mechaniki i Konstrukcji Maszyn, Wydział Inżynierii Mechanicznej, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy, al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz
autor
  • Computer Methods Department, Institute of Mechanics and Machine Design, University of Science and Technology in Bydgoszcz
  • Computer Methods Department, Institute of Mechanics and Machine Design, University of Science and Technology in Bydgoszcz
Bibliografia
  • AVILES R., ALBIZURI J., RODRIGUE A., LOPEZ DE LACALLE L.N. 2013. Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel. International Journal of Fatigue, 55: 230–244. http://doi.org/10.1016/j.ijfatigue.2013.06.024 (access: 5.09.2016).
  • BANDARA C.S., SIRIWARDANE S.C., DISSANAYAKE U.I., DISSANAYAKE R. 2016. Full range S-N curves for fatigue life evaluation of steels using hardness measurements. International Journal of Fatigue, 82: 325–331. http://doi.org/10.1016/j.ijfatigue.2015.03.021 (access: 29.09.2016).
  • CASTILLO E., FERNÁNDEZ-CANTELI A. 2009. A Unified Statistical Methodology for Modeling Fatigue Damage. Springer, Dordrecht. http://doi.org/10.1007/978-1-4020-9182-7 (access: 23.01.2016).
  • COVA M., TOVO R. 2016. Fitting fatigue data with a bi-conditional model. Fatigue & Fracture of Engineering Materials & Structures, p. 1–17. http://doi.org/10.1111/ffe.12541 (access: 10.09.2016).
  • GOGLIO L., ROSSETTO M. 2004. Comparison of fatigue data using the maximum likelihood method. Engineering Fracture Mechanics, 71(4–6): 725-736. http://doi.org/10.1016/S0013-7944(03)00009- 2 (access: 30.01.2015).
  • HOBBACHER A.F. 2008. Recommendations for fatigue design of welded joints and components. IIW document IIW-1823-07. International Institute of Welding, Paris.
  • HOBBACHER A.F. 2009. The new IIW recommendations for fatigue assessment of welded joints and components – A comprehensive code recently updated. International Journal of Fatigue, 31(1): 50–58. http://doi.org/10.1016/j.ijfatigue.2008.04.002 (access: 20.08.2015).
  • ISO-1143. 2010. Metallic materials – Rotating bar bending fatigue testing. Geneva.
  • ISO-12107. 2003. Metallic materials – fatigue testing – statistical planning and analysis of data. Geneva.
  • KOCAK M., WEBSTER S., JANOSCH J.J., AINSWORTH R.A., KOERS R. 2006. FITNET Fitness-for-Service PROCEDURE – FINAL DRAFT MK7. Vol. I. FITNET FFS Procedure, European Fitness-forService Thematic Network – FITNET.
  • KOCAŃDA S., SZALA J. 1997. Basis of calculation of fatigue. Wydawnictwo Naukowe PWN, Warszawa.
  • KOHOUT J., VECHET S. 2001. A new function for fatigue curves characterization and its multiple merits. International Journal of Fatigue, 23(2): 175–183. http://doi.org/10.1016/S0142-1123(00)00082-7 (access: 04.10.2016).
  • KOZAK J., GÓRSKI Z. 2011. Fatigue strength determination of ship structural joints. Polish Maritime Research, 18(2): 28-36. http://doi.org/10.2478/v10012-011-0009-8 (access: 20.08.2015).
  • KUREK M., LAGODA T., KATZY D. 2014. Comparison of Fatigue Characteristics of some Selected Materials. Materials Testing, 56(2): 92–95. http://doi.org/10.3139/120.110529 (access: 30.06.2016).
  • LEE Y.L., PAW J., HATHAWAY R.B., BARKEY M.E. 2005. Fatigue Testing and Analysis – Theory and Practice. Elsevier Butterworth-Heinemann, Burlington, Oxford.
  • LING J., PAN J. 1997. An engineering method for reliability analyses of mechanical structures for long fatigue lives. Reliability Engineering & System Safety, 56:: 135–142. http://doi.org/10.1016/S0951- 8320(97)00012-4 (access: 22.01.2015)
  • LORÉN S., LUNDSTRO¨M M. 2005. Modelling curved S-N curves. Fatigue and Fracture of Engineering Materials and Structures, 28: 437–443. http://doi.org/10.1111/j.1460-2695.2005.00876.x (access: 27.01.2015).
  • MOHD S., BHUIYAN M.S., NIE D., OTSUKA Y., MUTOH Y. 2015. Fatigue strength scatter characteristics of JIS SUS630 stainless steel with duplex S-N curve. International Journal of Fatigue, 82: 371–378. http://doi.org/10.1016/j.ijfatigue.2015.08.006 (access: 28.06.2016).
  • PASCUAL F.G., MEEKER W.Q. 1999. Estimating Fatigue Curves with the Random Fatigue-Limit Model. Technometrics, 41(4): 277–290. http://doi.org/10.2307/1271342 (access: 19.03.2015).
  • PN-EN 14764. 2007. Rowery miejskie i wycieczkowe. Wymagania bezpieczeństwa i metody badań.
  • PN-EN 1993-1-9. 2007. Eurokod 3: Designing steel structures. Part 1-9: Fatigue.
  • PN-EN-3987. 2010. Aerospace series – Test methods for metallic materials – Constant amplitude force-controlled high cycle fatigue testing.
  • PN-H-04325:1976. 1976. Badanie metali na zmęczenie – Pojęcia podstawowe i ogólne wytyczne przygotowania próbek oraz przeprowadzenia prób.
  • R: A language and environment for statistical computing. 2015. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/ (access:05.05.2015).
  • Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data. 2006. ASTM E-739-91. DOI: 10.1520/E0739-10R15.
  • STRZELECKI P., SEMPRUCH J. 2012. Experimental Verification of the Analytical Method for Estimated S-N Curve in Limited Fatigue Life. Materials Science Forum, 726: 11–16. http://doi.org/10.4028/www.scientific.net/MSF.726.11 (access:09.04.2015).
  • STRZELECKI P., SEMPRUCH J. 2016. Experimental method to plot S-N curve with a small number of specimens. Polish Maritime Research (accepted for publication).
  • STRZELECKI P., SEMPRUCH J., NOWICKI K. 2015. Comparing guidelines concerning construction of the S-N curve within limited fatigue life range. Polish Maritime Research, 22(3): 67–74.
  • STRZELECKI P., SEMPRUCH J., TOMASZEWSKI T. 2016. Alternative Method for the Determination of a Full S-N Fatigue Profile. Solid State Phenomena, 250: 209–216. http://doi.org/10.4028/www.scientific.net/SSP.250.209 (access:30.06.2016).
  • SZALA G., LIGAJ B. 2011. Dwuparametryczne charakterystyki zmęczeniowe stali konstrukcyjnych i ich eksperymentalna weryfikacja. Uniwersytet Technologiczno-Przyrodniczy im. J.J. Śniadeckich – Instytut Technologii Eksploatacji – PIB, Bydgoszcz.
  • Wagons – Programme of tests to be carried out on wagons with steel underframe and body structure (suitable for being fitted with the automatic buffing and draw coupler) and on their cast steel frame bogies. 1996. 8 edition. ERRI B12 RP 17.
Uwagi
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5aa2cc7e-1865-4f41-ba2d-898a6b1d54dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.