Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of near-collisions in the Tagus River Estuary using a marine traffic simulation model

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper evaluates near ship-ship collision situations in the Tagus River Estuary using a simulation model of ship navigation in restricted waters. The simulation model consists of a ship collision avoidance model based on the Artificial Potential Field (APF) method, which has been improved to account for the lateral distribution of traffic along the route, the ship type and length and speed development of the ships along the trajectory. AIS data of ships entering and leaving the port of Lisbon are analysed to obtain the main characteristics of traffic parameters used as input for the traffic simulation model, such as: the routes of the vessels, speed distribution along the routes, traffic density and characteristics of the ships in each route, among others. First, the improved model of ship navigation and the Monte Carlo simulation technique are used to simulate the marine traffic in the Tagus River Estuary. Then, the concept of “ship domain” is used as collision criterion to determine the number of near collisions and the locations where they are most likely to occur. Finally, the simulation results are compared to the ones obtained from raw AIS data to assess the capability of the simulation model for marine traffic risk analysis.
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
  • Universidade de Lisboa, Instituto Superior Técnico Centre for Marine Technology and Ocean Engineering (CENTEC) Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
  • Universidade de Lisboa, Instituto Superior Técnico Centre for Marine Technology and Ocean Engineering (CENTEC) Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
  • Universidade de Lisboa, Instituto Superior Técnico Centre for Marine Technology and Ocean Engineering (CENTEC) Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
  • 1. BLOKUS-ROSZKOWSKA, A. & SMOLAREK, L. (2012) Collision Risk Estimation for Motorways of the Sea. Reliability Theory and Practice. 7. pp. 58–68.
  • 2. FUJII, Y. & TANAKA, K. (1971) Traffic capacity. Journal of Navigation, 24 (4), 543-552.
  • 3. FUJII, Y., YAMANOUCHI, H. & MIZUKI, N. (1970) On the fundamentals of marine traffic control. Part 1 probabilities of collision and evasive actions. Electron. Navigation Res. Inst. Pap. 2. pp. 1–16.
  • 4. GOERLANDT, F. & KUJALA, P. (2011) Traffic simulation based ship collision probability modeling. Reliability Engineering and System Safety. 96 (1). pp. 91–107.
  • 5. GOERLANDT, F. & MONTEWKA, J. (2015a) A Framework for Risk Analysis of Maritime Transportation Systems: A Case Study for Oil Spill from Tankers in a Ship-Ship Collision. Safety Science. 76. pp. 42–66.
  • 6. GOERLANDT, F. & MONTEWKA, J. (2015b) Maritime Transportation Risk Analysis: Review and Analysis in Light of Some Foundational Issues. Reliability Engineering & System Safety. 138. pp. 115–34.
  • 7. GOERLANDT, F., MONTEWKA, J., LAMMI, H. & KUJALA, P. (2012) Analysis of near Collisions in the Gulf of Finland. In Advances in Safety, Reliability and Risk Management, 2880–86. Troyes, France.
  • 8. GOODWIN, E.M. (1975) A statistical study of ship domains. Journal of Navigation. 28(3). pp. 328–344.
  • 9. HANNINEN, M. & KUJALA, P. (2012) Influences of variables on ship collision probability in Bayesian belief network model. Reliability Engineering and System Safety. 102. pp. 27–40.
  • 10. HUTTENLOCHER, D.P., KLANDERMAN, G.A. & RUCKLIDGE, W.J. (1993) Comparing images using the Hausdorff distance. Transactions on pattern analysis and machine intelligence. 15 (9). pp. 850–863.
  • 11. IPEREN, E. van (2012) Detection of Hazardous Encounters at the North Sea from AIS Data. In Proceedings of International Workshop of Next Generation Nautical Traffic Models. 1–12. Shanghai, China.
  • 12. KHATIB, O. (1986) Real-time obstacle avoidance for manipulators and mobile robots. Robotics Res. 5(1). pp. 90– 98.
  • 13. LEE, S.M., KWON, K.Y. & JOH, J. (2004) A fuzzy autonomous navigation of marine vehicles satisfying COLREGS guidelines. Control Autom. 2(2). pp. 171–181.
  • 14. LI, S., MENG, Q. & QU, X. (2012) An Overview of Maritime Waterway Quantitative Risk Assessment Models. Risk Analysis. 32 (3). pp. 496–512.
  • 15. MACDUFF, T. (1974) The probability of vessel collisions. Ocean Industry. 9(9). pp. 144–148.
  • 16. MERRICK, J.R.W., VAN DORP, J.R., HARRALD, J., MAZZUCHI, T., SPAHN, J. & GRABOWSKI, M. (2000) A systems approach approach to managing oil transportation risk in Prince William Sound. System Engineering. 3(3). pp. 128–142.
  • 17. MONTEWKA, J., EHLERS, S., GOERLANDT, F., HINZ, T., TABRI, K. & KUJALA, P. (2014) A framework for risk assessment for maritime transportation systems – A case study for open sea collisions involving RoPax vessels. Reliability Engineering and System Safety. 124. pp. 142–157.
  • 18. MONTEWKA, J., GOERLANDT, F. & KUJALA, P. (2012) Determination of collision criteria and causation factors appropriate to a model for estimating the probability of maritime accidents. Ocean Engineering. 40. pp. 50–61.
  • 19. MONTEWKA, J., HINZ, T., KUJALA, P. & MATUSIAK, J. (2010) Probability modeling of vessel collision. Reliability Engineering and System Safety. 95(5). pp. 573–89.
  • 20. MONTEWKA, J., KRATA, P., GOERLANDT, F., MAZAHERI, A. & KUJALA, P. (2011) Marine Traffic Risk Modelling – an Innovative Approach and a Case Study. Proceedings of the Institution of Mechanical Engineers. Part O: Journal of Risk and Reliability. 225 (3). pp. 307–22.
  • 21. ÖZBAŞ, B. (2013) Safety Risk Analysis of Maritime Transportation: Review of the Literature. Transportation Research Record: Journal of the Transportation Research Board. 2326. pp. 32–38.
  • 22. PEDERSEN, P.T. (1995) Collision and grounding Mechanics, The Danish Society of Naval Architects and Marine Engineers. pp. 125–57.
  • 23. PIETRZYKOWSKI, Z. (2008) Ship’s Fuzzy Domain – a Criterion for Navigational Safety in Narrow Fairways. Journal of Navigation. 62. pp. 499–514.
  • 24. QU X.B., MENG, Q. & LI, S.Y. (2011) Ship collision risk assessment for the Singapore Strait. Accident Analysis and Prevention. 43 (6). pp. 2030–2036.
  • 25. RONG H., TEIXEIRA A.P. & GUEDES SOARES, C. (2015) Simulation and analysis of maritime traffic in the Tagus River Estuary using AIS data. Maritime Technology and Engineering, Guedes Soares & Santos (Eds), Taylor & Francis Group. London. pp. 185–193.
  • 26. SILVEIRA, P., TEIXEIRA, P.A. & GUEDES SOARES, C. (2015) Assessment of ship collision estimation methods using AIS data. Maritime Technology and Engineering, Guedes Soares & Santos (Eds), Taylor & Francis Group. London. pp. 195–204.
  • 27. WANG, N., MENG, X., XU, Q., WANG, Z. (2009) A Unified Analytical Framework for Ship Domains. Journal of Navigation, 62, 643-655.
  • 28. XIAO, F., LIGTERINGEN, H., GULIJK, C. van & ALE, B. (2013) Nautical Traffic Simulation with Multi-Agent System for Safety. International Workshop on Next Generation Nautical Traffic Models 2013. Delft, The Netherlands.
  • 29. XUE, Y., CLELLAND, D., LEE, B.S. & HAN, D. (2011) Automatic simulation of ship navigation. Ocean Engineering. 38(17–18). pp. 2290–2305.
  • 30. ZHANG, W., MONTEWKA, J. & GOERLANDT, F. (2015) SemiQualitative Method for Ship Collision Risk Assessment. In Safety and Reliability: Methodology and Applications. pp. 1563–72. Wroclaw, Poland.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.