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Abstract: The current work presents a hygrothermal analysis of laminated composite 
rhombic hyperbolic paraboloids. The cubic variation in displacement field together with 
cross curvature effects of the shell were used to solve the hygrothermal problem. Because 
of the parabolic variation of the transverse shear deformation, the shear correction factor 
was not necessary in this paper. In the mathematical model, the zero conditions of the 
transverse shear stress at the bottom and top of the shell were applied. The nine-noded 
curved isoparametric element with seven unknowns in each node was used to implement 
the present realistic mathematical model. The implementation of the finite element C0 (FE) 
of the present mathematical model was coded and performed in FORTRAN. The skew 
hyperbolic paraboloid on which the hygrothermal analysis was conducted had various 
temperatures, ply orientation, curvatures, moisture concentration, boundary conditions and 
thickness ratio. The paper shows that with the increase of the skew angle, the non-dimen-
sional deflection decreases, and with the increase of moisture concentration, hygrothermal 
load and curvature ratio, the deflection increases. The results of the model presented in 
the paper were compared with other results published in the literature and were found to 
be consistent with them.
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1. Introduction 
Laminated composite structures are gaining more and more attention today due to 

their improved properties, such as high strength-to-weight ratio, resistance to oxidation 
corrosion, high strength-to-rigidity ratio and improved toughness. Due to their advantages 
such as structural lightness and rigidity, laminated composite hyperbolic paraboloids are 
used in various industries. However, laminated structures are often exposed to moisture 
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loads and unfavourable temperatures during their service lifespan. Due to their porosity, 
building materials often contain water in their structure, which contributes to the reduction 
of their load capacity and thermal properties [1-3]. Temperature and moisture cause stress 
and deformation of laminated composite structures, which leads to their destruction. This 
is why it is so important to study laminated composite hyperbolic paraboloids subjected to 
hygrothermal load. 

Pipes et al. [4] examined the hygrothermal response of the laminated composite plate. 
The classical diffusion equation was used in their study to describe the diffusion of moisture. 
Their results, though, were limited to thin geometry. The paper [5] presents the results of 
thermal stress and deformation tests on antisymmetric cross-ply and angle-ply laminates. 
The effect of moisture and temperature on the cylindrical composite shell was studied by 
Lee and Yen [6] using the FE method. The paper [7] develops and presents equations for 
the laminated composite plates which take into account the influence of expansive stress 
caused by moisture and temperature. To conduct the hygrothermal analysis of plate or shell, 
researchers have used various methods. In his work, Pell [8] examined the problem of thermal 
bending of thin anisotropic plates. The FE method with quadratic isoparametric element 
was used by Ram and Sinha [9] to determine the hygrothermal influence on the bending 
properties of laminates. Researchers in [10] developed a FE formula for an anisotropic 
composite panel subjected to thermal and mechanical loads. This study presents an exact 
closed-form solution for laminated composite plates subjected to sinusoidal loading. In [11], 
Lawrence and Doxsee applied the higher order theory to study the hygrothermal behaviour 
of shells. They used various shapes of shells as well as arbitrary temperature and moisture 
distributions. CLPT and the von Karman large deflection theory were used by Lee et al. [12] 
to investigate the effect of hygrothermal energy on the cylindrical bending of symmetric 
angle-ply laminates subjected to uniform transverse loading. Zenkour and Alghanmi [13] 
applied the sinusoidal shear deformation theory to investigate sinusoidal hygrothermal 
load of multilayer plates. The paper [14] presents experimental and numerical tests based 
on FSDT and applied in a dynamic analysis of laminated shallow shells in hygrothermal 
conditions. A single-layer model designed for thermal bending analysis of laminated cylin-
drical shells using FSDT was developed by Zenkour and Fares [15]. Singh and Chakrabarti 
[16] used an efficient HSDT to perform a hygrothermal analysis of laminates. Zenkour 
[17] applied a unified shear deformation plate theory to study thermo-elastic behaviour of 
symmetric and anti-symmetric cross-ply laminates. As part of a unified formula, Brischetto 
[18] proposed an improved 2D model for the bending analysis of multilayer composite 
and sandwich plates subjected to mechanical and hygrothermal loading. Upadhyaya et al. 
[19] conducted a non-linear bending analysis of laminates exposed to hygrothermal and 
mechanical loads. In [20], a hygrothermal analysis of cylindrical shells was carried out 
using HSDT. Patela et al. [21] applied HSDT to present the dynamic and static behaviour 
of thick composite laminates in hygrothermal conditions. Ali et al. [22] On the basis of 
the new higher order displacement theory, Ali et al. [22] developed an accurate model for 
mechanical and thermal analysis of thick laminates. Bending analysis of multilayer plates 
subjected to thermomechanical loading was presented by Brischetto and Carrera [23]. In 
[24], closed-form thermomechanical solutions for the analysis of double curved laminated 
shells with the use of 2D HSDT theory were described. Tauchert [25] presented the test of 
reaction to thermal load. The paper discusses large post-bending deformation, buckling, 
vibration analysis and thermally induced bending. Khdeir et al. [26] demonstrated thermal 
analysis of cross-ply shallow shells with the use of a precise analytical solution. In their 
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work [27], Jin and Yao showed an effective, improved C0-type global/local model (IGLM) 
for a bending analysis of thick cross-ply laminates in hygrothermal load conditions. In [28], 
a direct, iterative C0 non-linear FE method is presented for a spherical shell panel and plate 
exposed to hygro-thermo-mechanical loading.

The literature study showed that there are no hygrothermal analysis results concerning 
laminated composite rhombic hyperbolic paraboloids. Therefore, this paper aims to investigate 
their hygrothermal behaviour. For this study, the authors have developed a C0 FE model based 
on a nine-noded continuous curved isoparametric element.

2. Mathematical formulas

2.1. Strains and displacement fields 
Fig. 1 shows a laminated composite shell with the reference plane at z = 0 and the 

curvature Rx and Ry longitudinally to the x and y axes. 

Fig. 1. Laminated composite hyperbolic paraboloid shell, where a and b represent the sides of a hyperbolic 
paraboloid with a total thickness of h. Source: own study

Based on Reddy [29], the displacement fields are established and indicated as:
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Equation (4) shows a linear strain-displacement relationship, which is based on Sanders’ approximation.
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To shorten the analysis to Love’s first approximation, the tracer coefficient (A1) is used. 
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The developed displacement field shall be obtained by eliminating the transverse shear 
stress resultants at ± h/2 of the shell as follows:
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{R} (the nodal degree of freedom) can be defined as:
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The developed displacement field shall be obtained by eliminating the transverse shear stress resultants at ± h/2 of
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where: α1, α2 , α12 - coefficients of thermal expansion referred to the main material axes of the laminate; αx, αy, αxy - trans-

formed coefficients of thermal expansion referred to the x-y coordinate system.
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where: α1, α2 , α12 - coefficients of thermal expansion referred to the main material axes of the laminate; αx, αy, αxy - trans-

formed coefficients of thermal expansion referred to the x-y coordinate system.
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Case No.1. Uniform temperature over the entire depth:
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Fig. 3. The geometry of skew laminated hyperbolic paraboloids. Source: own study
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A nodal transformation matrix on the skew boundary is shown below.
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5. Results and discussion

5.1. Validation of the formula – a convergence study
As shown in Tab. 1, the convergence test was carried out by varying the mesh size from 

12×12 to 20×20 (Nx and Ny – numbers of elements in x and y-direction). 

Table 1. The convergence study of laminated (0°/90°) skew hyperbolic paraboloid (Rx/Ry = -0.5, skew 
angle = 15°) subjected to hygrothermal loading (ΔT = 1 and ΔC = 0.01%). Source: own study

Mesh Size Non-dimensional deflection
12×12 2.4565
14×14 2.4505
16×16 2.4450
18×18 2.4449
20×20 2.4449

As shown in Tab. 1, the value of non-dimensional deflection converged for Nx×Ny = 16×16. 
Therefore, all subsequent analyses were carried out with the above-mentioned mesh size.

5.2. Validation of the formula – comparison of results
Tab. 2 shows the middle deflection (mm) of a two-ply (0°/90°) perpendicularly supported 

square laminate with different thickness ratios. The results are similar to those in [23]. The 
values of the middle deflection for rectangular SS laminated plates exposed to sinusoidal 
temperature gradient for (h/r) = 0.01 are shown in Tab. 3. 

Table 2. In-plane and transverse displacements of double-layered (0°/90°) square laminate. Source: [23], own 
study

Thickness Ratio Brischetto and Carrera [23] Present
100 5.9448 5.9424
50 1.4857 1.4857
10 0.0587 0.0590
5 0.0141 0.0144

Table 3. Influence of the shape factor on the deflection in SS composite plates. Source: [16], [10],  
own study

Reference
0/90/0 0 0/90

a/b=1 a/b=1.5 a/b=2 a/b=1 a/b=1
Present 1.0174 0.8585 0.6319 1.0226 1.1080
Singh and Chakrabarti [16] 1.0429 0.8802 0.6566 1.0332 1.1520
Reddy and Hsu [10] 1.0949 0.9847 0.7643 1.0313 1.6765

In order to validate the central transverse deflection of laminated shells subjected to sinu-
soidal temperature load of different curvature, these results were compared with the results of 
Khare et al. [24] and Brischetto [18] in Tab. 4. It can be seen in Tab. 4 that the current figures 
are similar to HSDT. Tab. 5 shows non-dimensional middle deflections of three-layer laminated 
rectangular plates (0°/90°/0°) subjected to sinusoidal hygrothermal distribution (∆T = 300°C 
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and ∆C = 0.01%). Importantly, the current numerical result is in accordance with the results 
presented by Zenkour et al. [13].

Table 4. Non-dimensional middle deflections of three-layer shells. Source: [24], [26], [18], own study

R/a Present Khare et al. [24] 
[HOST12]

Khare et al. [24]
[FOST]

Khdeir et al. [26]
[HSDT] Brischetto [18]

Cylindrical shell (0/90) with a/b = 1, h/a = 0.1, R1 = ∞, R2 = R

5 1.1249 1.1261 1.1272 1.1235 --

10 1.1423 1.1434 1.1444 1.1421 --

50 1.1481 1.1493 1.1501 1.1482 --
Spherical shell (0/90) with a/b = 1, h/a = 0.1, R1 = R2 = R
5 1.0574 1.0588 1.0578 1.0545 --
10 1.1243 1.1256 1.1258 1.1235 --
50 1.1474 1.1487 1.1493 1.1475 --
Ten-layered cylindrical shell (0/90/…) with a/b = 1, h/a = 0.1, R1 = ∞, R2 = R
5 1.0234 1.0224 1.0234 1.0216 1.0207
10 1.0308 1.0299 1.0307 1.0303 1.0283
50 1.0331 1.0325 1.0330 1.0332 1.0306

Table 5. Non-dimensional middle deflections of three-layer (0°/90°/0°) laminates subjected to sinusoidal 
hygrothermal distribution. Source: [13], own study

a/b
a/h = 10 a/h = 20 a/h = 50

Present Zenkour and 
Alghanmi [13] Present Zenkour and 

Alghanmi [13] Present Zenkour and 
Alghanmi [13]

1 2.7360 2.7749 2.1691 2.3654 1.9906 2.2355
1.5 3.2156 3.2273 2.9160 2.8521 2.8168 2.7148
2 3.0517 2.8496 2.9415 2.6631 2.8971 2.5849

5.3. Parametric study
Tab. 6 shows the dimensionless middle deflection of a three-layer hyperbolic paraboloid 

exposed to sinusoidal hygrothermal loading. The coefficient of curvature (Rx/Ry) was differ-
entiated from -0.50 to -1.50. The value of dimensionless deflection increases as the curvature 
coefficient increases, and as the skew angle increases, the value of dimensionless deflection 
decreases. 
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Table 6. Non-dimensional middle deflections of three-layer (0°/90°/0°) skew hyperbolic paraboloid subjected 
to sinusoidal hygrothermal distribution (∆T = 300 °C, ∆C = 0.01%). Source: own study

Curvature Skew angle
Boundary conditions
SS CC CS

-0.50

00 2.669 0.852 1.673
150 2.445 0.809 1.480
300 1.866 0.673 1.252
450 1.137 0.444 1.016
600 0.487 0.193 0.686

-0.10

00 2.741 1.243 1.768
150 2.528 1.154 1.576
300 1.953 0.904 1.260
450 1.194 0.549 0.862
600 0.509 0.219 0.450

-1.50

00 2.763 1.371 1.795
150 2.553 1.267 1.604
300 1.977 0.978 1.258
450 1.210 0.582 0.806
600 0.516 0.227 0.369

The dimensionless maximum deflection of skew hyperbolic paraboloids (with different 
lamination schemes) subjected to sinusoidal temperature and hygrothermal load are shown 
in Tab. 7. For a shell subjected to hygrothermal load, the value of maximum dimensionless 
deflection is greater than in a shell subjected to thermal load only. An angle-ply shell has less 
maximum dimensionless deflection than a cross-ply shell. As the skew angle increases, the 
dimensionless deflection decreases for the entire lamination scheme under consideration. 

Table 7. The non-dimensional central deflections of skew hyperbolic paraboloid under sinusoidal hygrothermal 
distribution (∆T = 300°C, ∆C = 0.01%). Source: own study

Skew angle 0°/900 45°/-45° 0°/90°/0° 45°/-45°/45° 0°/90°/90°/0°
Temperature loading
00 1.151 0.698 1.055 0.813 1.044
150 0.994 0.626 0.939 0.735 0.868
300 0.642 0.522 0.652 0.586 0.497
450 0.307 0.272 0.336 0.318 0.194
600 0.093 0.049 0.110 0.083 0.047
Hygrothermal loading
00 6.805 2.728 2.741 2.313 2.559
150 5.914 3.113 2.528 2.315 2.118
300 3.893 3.017 1.953 1.950 1.173
450 1.924 1.857 1.194 1.179 0.426
600 0.633 0.578 0.509 0.385 0.089

Tab. 8 shows dimensionless middle deflections of laminated hyperbolic paraboloids 
of varying thickness. The maximum dimensionless deflection is noticeable for the shell for 
which a/h = 5, and when thickness decreases, the dimensionless deflection increases to a/h 
= 50. Tabs 9-10 show the change of material properties with the change in temperature and 
moisture content. The maximum deflection of laminated hyperbolic paraboloids subjected to 
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different thermal loads is shown in Tab. 11. The deflection of the shell was found to increase 
as the temperature rises. Tab. 12 shows the maximum deflection of hyperbolic paraboloids with 
different moisture concentrations in the laminate layer. The value of dimensionless deflection 
increases as moisture concentration increases. Tabs 13-15 show non-dimensional stresses (
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xy) of a laminated rhombic hyperbolic paraboloid subjected to hygrothermal loading (in 
the same location as above). The maximum stresses are observed to depend on the skew angle 
and boundary conditions.

Table 8. The non-dimensional central deflections of a laminated skew hyperbolic paraboloid under sinusoidal 
hygrothermal loading. Source: own study

Skew angle a/h = 5 a/h = 10 a/h = 20 a/h = 50 a/h = 100
SS
00 6.650 6.805 6.852 6.870 6.860
150 5.831 5.914 5.896 5.814 5.496
300 3.883 3.893 3.832 3.673 3.164
450 1.880 1.924 1.906 1.805 1.494
600 0.577 0.633 0.648 0.619 0.528
CC
00 1.921 1.956 1.887 1.336 0.696
150 1.692 1.757 1.720 1.256 0.671
300 1.127 1.233 1.262 1.013 0.592
450 0.529 0.618 0.674 0.625 0.438
600 0.153 0.188 0.219 0.230 0.207

Table 9. Material properties at moisture concentrations G13 = G12, G23 = 0.5 G12, ν12=0.3, β1 = 0,  
and β2 = 0.44. Source: own study

Elastic 
moduli

Moisture concentration (C %)
0 0.25 0.5 0.75 1.0 1.25 1.5

E1 130 130 130 130 130 130 130
E2 9.5 9.25 9.0 8.75 8.5 8.5 8.5
G12 6.0 6.0 6.0 6.0 6.0 6.0 6.0

Table 10. Material properties at various temperatures (G13 = G12, G23 = 0.5 G12, ν12 = 0.3, α1 = -0.3 × 10-6, and 
α2 = 28.1×10-6). Source: own study

Elastic moduli
Temperature T(K)
300 325 350 375 400 425

E1 130 130 130 130 130 130
E2 9.5 8.5 8.0 7.5 7.0 6.75
G12 6.0 6.0 5.5 5.0 4.75 4.5
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Table 11. Maximum deflection of laminated skew hyperbolic paraboloids under various temperature loading. 
Source: own study

Skew 
angle ∆T = 300 ∆T = 325 ∆T = 350 ∆T = 375 ∆T = 400 ∆T = 425

SS
0° 1.582 1.592 1.685 1.770 1.823 1.912
15° 1.382 1.391 1.470 1.543 1.588 1.665
30° 0.925 0.932 0.983 1.028 1.057 1.107
45° 0.470 0.475 0.499 0.520 0.533 0.557
60° 0.161 0.163 0.170 0.176 0.181 0.188
CC
0° 0.510 0.517 0.541 0.561 0.575 0.600
15° 0.458 0.464 0.486 0.504 0.517 0.539
30° 0.323 0.327 0.342 0.355 0.364 0.379
45° 0.164 0.167 0.174 0.180 0.184 0.191
60° 0.051 0.052 0.053 0.055 0.056 0.058

Table 12. Maximum deflection of laminated skew hyperbolic paraboloids with different moisture concentra-
tions. Source: own study

Skew angle
Moisture Concentration (C %)
0.25 0.5 0.75 1.0 1.25 1.5

0° 0.312 0.613 0.903 1.181 1.560 1.872
15° 0.303 0.596 0.878 1.149 1.516 1.819
30° 0.268 0.527 0.776 1.017 1.339 1.607
45° 0.194 0.382 0.564 0.739 0.971 1.166
60° 0.099 0.196 0.289 0.379 0.496 0.596

Table 13. Non-dimensional stress 
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Table 15. Non-dimensional in-plane stress
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6. Conclusions
A C0 finite element (FE) formulation was developed using Sanders’ approximations and 

was applied to study the static reaction of a composite skew hyperbolic paraboloid exposed to 
hygrothermal loading. Many new results were obtained concerning the hygrothermal reaction 
of laminated hyperbolic paraboloids with different moisture concentration, thickness ratio, 
skew angle, boundary conditions, radius of curvature, temperature and layer orientation, which 
should be beneficial for future studies. 

General conclusions are as follows: 
• As the curvature coefficient increases, the value of dimensionless deflection increases.
• As the skew angle increases, the dimensionless deflection decreases. 
• The dimensionless deflection increases as the moisture concentration increases. 
• An angle-ply shell shows less maximum non-dimensional deflection than a cross-ply 

shell.
• The deflection of the shell increases as the temperature changes.
• In a shell subjected to hygrothermal load, the maximum value of non-dimensional 

deflection is greater than in a shell subjected to thermal load only.
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