PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parkinson disease detection using energy direction features based on EMD from voice signal

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Voice disorders are one of the incipient symptoms of Parkinson's disease (PD). Recent studies have shown that approximately 90% of PD patients suffer from vocal disorders. Therefore, it is significant to extract pathological information on the voice signals to detect PD. In this paper, a feature, named energy direction features based on empirical mode decomposition (EDF-EMD), is proposed to show the different characteristics of voice signals between PD patients and healthy subjects. Firstly, the intrinsic mode functions (IMFs) were obtained through the decomposition of voice signals by EMD. Then, the EDF is obtained by calculating the directional derivatives of the energy spectrum of each IMFs. Finally, the performance of the proposed feature is verified on two different datasets: dataset-Sakar and dataset-CPPDD. The proposed approach shows the best average resulting accuracy of 96.54% on dataset-Sakar and 92.59% on dataset-CPPDD. The results demonstrate that the method proposed in this paper is promising in the field of PD detection.
Twórcy
autor
  • School of Information Science and Engineering, Yanshan University, Hebei Street, No438, Qinhuangdao 066004, PR China; Hebei Key Laboratory on Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, PR China
autor
  • School of Information Science and Engineering, Yanshan University, Qinhuangdao, PR China; Hebei Key Laboratory on Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, PR China
autor
  • School of Information Science and Engineering, Yanshan University, Qinhuangdao, PR China; Hebei Key Laboratory on Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, PR China
autor
  • School of Information Science and Engineering, Yanshan University, Qinhuangdao, PR China; Hebei Key Laboratory on Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, PR China
Bibliografia
  • [1] Anand A, Haque MA, Alex JSR, Venkatesan N. Evaluation of Machine learning and Deep learning algorithms combined with dimentionality reduction techniques for classification of Parkinson's disease. Proc IEEE Int Symp Signal Proc Inf Tech 2018;342–7. http://dx.doi.org/10.1109/ISSPIT.2018.8642776.
  • [2] Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson's disease: a review of the evidence. Eur J Epidemiol 2011;26(1):1–58. http://dx.doi.org/10.1007/s10654-011-9581-6.
  • [3] Gaballah A, Parsa V, Andreetta M, Adams S. Objective and subjective speech quality assessment of amplification devices for patients with Parkinson's disease. IEEE Trans Neural Syst Rehabil Eng 2019;27(6):1226–35. http://dx.doi.org/10.1109/TNSRE.2019.2915172.
  • [4] Hu K, Wang Z, Wang W, Martens KAE, Wang L, Tan T, et al. Graph sequence recurrent neural network for vision-based freezing of gait detection. IEEE Trans Image Process 2020;29:1890–901. http://dx.doi.org/10.1109/TIP.2019.2946469.
  • [5] Naghavi N, Wade E. Prediction of freezing of gait in Parkinson's disease using statistical inference and lower– limb acceleration data. IEEE Trans Neural Syst Rehabil Eng 2019;27(5):947–55. http://dx.doi.org/10.1109/TNSRE.2019.2910165.
  • [6] Lahmiri S. Gait nonlinear patterns related to Parkinson's disease and age. IEEE Trans Instrum Meas 2019;68 (7):2545–51. http://dx.doi.org/10.1109/TIM.2018.2866316.
  • [7] Upadhya SS, Cheeran AN, Nirmal JH. Statistical comparison of Jitter and Shimmer voice features for healthy and Parkinson affected persons. 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT); 2017;1–6. http://dx.doi.org/10.1109/ICECCT.2017.8117853.
  • [8] Ramezani H, Khaki H, Erzin E, Akan OB. Speech features for telemonitoring of Parkinson's disease symptoms. Conf Proc IEEE Eng Med Biol Soc 2017;3801–5. http://dx.doi.org/10.1109/EMBC.2017.8037685.
  • [9] Vizza P, Tradigo G, Mirarchi D, Bossio RB, Lombardo N, Arabia G, et al. Methodologies of speech analysis for neurodegenerative diseases evaluation. Int J Med Inform 2019;122:45–54. http://dx.doi.org/10.1016/j.ijmedinf.2018.11.008.
  • [10] Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO. Novel speech signal processing algorithms for highaccuracy classification of Parkinson's disease. IEEE Trans Biomed Eng 2012;59(5):1264–71. http://dx.doi.org/10.1109/TBME.2012.2183367.
  • [11] Sakar BE, Serbes G, Sakar CO. Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease. PLoS One 2017;12(8). http://dx.doi.org/10.1371/journal.pone.0182428.
  • [12] Falk TH, Chan W, Shein F. Characterization of atypical vocal source excitation, temporal dynamics and prosody for objective measurement of dysarthric word intelligibility. Speech Commun 2012;54(5):622–31. http://dx.doi.org/10.1016/j.specom.2011.03.007.
  • [13] Karan B, Sahu SS, Mahto K. Parkinson disease prediction using intrinsic mode function based features from speech signal. Biocybern Biomed Eng 2020;40(1):249–64. http://dx.doi.org/10.1016/j.bbe.2019.05.005.
  • [14] Sakar BE, Isenkul ME, Sakar CO, Sertbas A, Gurgen F, Delil S, et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform 2013;17(4):828–34. http://dx.doi.org/10.1109/JBHI.2013.2245674.
  • [15] Dashtipour K, Tafreshi AR, Lee J, Crawley BK. Speech disorders in Parkinson's disease: pathophysiology, medical management and surgical approaches. Neurodegener dis Manag 2018;8(5):337-48. https://doi.org/10.2217/nmt-2018-0021.
  • 16] Skodda S, Gronheit W, Mancinelli N, Schlegel U. Progression of voice and speech impairment in the course of Parkinson's disease: a longitudinal study. J Parkinsons Dis 2013;2013. 389195-95.https://doi.org/10.1155/2013/389195.
  • [17] Yunusova Y, Weismer G, Westbury JR, Lindstrom MJ. Articulatory movements during vowels in speakers with dysarthria and healthy controls. J Speech Lang Hear Res 2008;51(3):596–611. http://dx.doi.org/10.1044/1092-4388(2008/043.
  • [18] Upadhya SS, Cheeran AN, Nirmal J. Thomson Multitaper MFCC and PLP voice features for early detection of Parkinson disease. Biomed Signal Process Control 2018;46:293–301. http://dx.doi.org/10.1016/j.bspc.2018.07.019.
  • [19] Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of Parkinson's disease progression by noninvasive speech tests. IEEE Trans Biomed Eng 2010;57 (4):884–93. http://dx.doi.org/10.1109/TBME.2009.2036000.
  • [20] Zahid L, Maqsood M, Durrani MY, Bakhtyar M, Baber J, Jamal H, et al. A spectrogram-based deep feature assisted computer-aided diagnostic system for Parkinson's disease. IEEE Access 2020;8:35482–95. http://dx.doi.org/10.1109/ACCESS.2020.2974008.
  • [21] Chiu Y, Neel AT. Predicting intelligibility deficits in Parkinson's disease with perceptual speech ratings. J Speech Lang Hear Res 2020;63(2):433–43. http://dx.doi.org/10.1044/2019_jslhr-19-00134.
  • [22] Solanalavalle G, Galanhernandez J, Rosasromero R. Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features. Biocybern Biomed Eng 2020;40(1):505–16. http://dx.doi.org/10.1016/j.bbe.2020.01.003.
  • [23] Morovelazquez L, Gomezgarcia JA, Godinollorente JI, Grandasperez F, Shattuckhufnagel S, Yaguejimenez V, et al. Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson's disease. Sci Rep 2019;9 (1):1–16. http://dx.doi.org/10.1038/s41598-019-55271-y.
  • [24] Roberts A, Post D. Information content and efficiency in the spoken discourse of individuals with Parkinson's disease. J Speech Lang Hear Res 2018;61(9):2259–74. http://dx.doi.org/10.1044/2018_JSLHR-L-17-0338.
  • [25] Fang S, Tsao Y, Hsiao M, Chen J, Lai Y, Lin F, et al. Detection of pathological voice using cepstrum vectors: a deep learning approach. J Voice 2019;33(5):634–41. http://dx.doi.org/10.1016/j.jvoice.2018.02.003.
  • [26] Bruckl M, Ghio A, Viallet F. Measurement of tremor in the voices of speakers with Parkinson's disease. Procedia Comput Sci 2018;128:47–54. http://dx.doi.org/10.1016/j.procs.2018.03.007.
  • [27] Gomezvilda P, Mekyska J, Ferrandez JM, Palaciosalonso D, Gomezrodellar A, Rodellarbiarge V, et al. Parkinson disease detection from speech articulation neuromechanics. Front Neuroinform 2017;11(56):1–17. http://dx.doi.org/10.3389/fninf.2017.00056.
  • [28] Zhang H, Yang L, Liu Y, Wang P, Yin J, Li Y, et al. Classification of Parkinson's disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples. Biomed Eng Online 2016;15(1):122. http://dx.doi.org/10.1186/s12938-016-0242-6.
  • [29] Vaiciukynas E, Verikas A, Gelzinis A, Bacauskiene M. Detecting Parkinson's disease from sustained phonation and speech signals. PLoS One 2017;12(10). http://dx.doi.org/10.1371/journal.pone.0185613.
  • [30] Muhlhaus J, Frieg H, Bilda K, Ritterfeld U. Game-Based speech rehabilitation for people with Parkinson's disease. International conference on universal access in humancomputer interaction(ICUAHCI); 2017;76–85. http://dx.doi.org/10.1007/978-3-319-58700-4_7.
  • [31] Miller N, Nath U, Noble E, Burn DJ. Utility and accuracy of perceptual voice and speech distinctions in the diagnosis of Parkinson's disease, PSP and MSA-P. Neurodegener Dis Manag 2017;7(3):191–203. http://dx.doi.org/10.2217/nmt-2017-0005.
  • [32] Sakar CO, Serbes G, Gunduz A, Tunc HC, Nizam H, Sakar BE, et al. A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform. Appl Soft Comput 2019;74:255–63. http://dx.doi.org/10.1016/j.asoc.2018.10.022.
  • [33] Peker M, Sen B, Delen D. Computer-aided diagnosis of Parkinson's disease using complex-valued neural networks and mrmr feature selection algorithm. J Healthc Eng 2015;6 (3):281–302. http://dx.doi.org/10.1260/2040-2295.6.3.281.
  • [34] Musa. A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM. J Med Syst 2016;40 (5):1–16. http://dx.doi.org/10.1007/s10916-016-0477-6.
  • [35] Max A, Little PEM, Hunter Eric J, Spielman Jennifer, Ramig Lorraine O. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Trans Biomed Eng 2009;56(4):1015. http://dx.doi.org/10.1109/TBME.2008.2005954.
  • [36] Hammami I, Salhi L, Labidi S. Voice pathologies classification and detection using EMD-DWT analysis based on higher order statistic features. Irbm 2020. http://dx.doi.org/10.1016/j.irbm.2019.11.004.
  • [37] Jiao J. Research and system development of Parkinson's disease detection based on speech spectrogram: nanjing University of Posts; 2018, CNKI:CDMD:2.1018.898757.
  • [38] Shi H. Convolutional neural network method for Parkinson's disease based on dysphonia: yanshan University; 2017, CNKI:CDMD:2.1017.726434.
  • [39] Gunduz H. Deep learning-based Parkinson's disease classification using vocal feature sets. IEEE Access 2019;7:115540–51. http://dx.doi.org/10.1109/ACCESS.2019.2936564.
  • [40] Vaiciukynas E, Gelzinis A, Verikas A, Bacauskiene M. Parkinson's disease detection from speech using convolutional neural networks. International Conference on Smart Objects & Technologies for Social Good (ICSOTSG); 2017. http://dx.doi.org/10.1007/978-3-319-76111-4_21.
  • [41] Kacha A, Grenez F, Orozco-Arroyave JR, Schoentgen J. Principal component analysis of the spectrogram of the speech signal: interpretation and application to dysarthric speech. Comput Speech Lang 2020;59:114–22. http://dx.doi.org/10.1016/j.csl.2019.07.001.
  • [42] Karan B, Mahto K, Sahu SS. Detection of Parkinson disease using variational mode decomposition of speech signal. 2018 International Conference on Communication and Signal Processing (ICCSP); 2018;0508–12. http://dx.doi.org/10.1109/ICCSP.2018.8524445.
  • [43] Zhang T, Jiang P, Li Lin, Zhang X. Dysphonic analysis of Parkinson's disease based on partially ordered topological graph. Chin J Biomed Eng 2019;038(001):59–69. https://doi. org/CNKI:SUN:ZSWY.0.2019-01-007.
  • [44] Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Math Phys Eng Sci 1998;454(1971):903–95. http://dx.doi.org/10.1098/rspa.1998.0193.
  • [45] Kerkeni L, Serrestou Y, Raoof K, Mbarki M, Mahjoub MA, Cleder C. Automatic speech emotion recognition using an optimal combination of features based on EMD-TKEO. Speech Commun 2019;114:22–35. http://dx.doi.org/10.1016/j.specom.2019.09.002.
  • [46] Altuve M, Suárez L, Ardila J. Fundamental heart sounds analysis using improved complete ensemble EMD with adaptive noise. Biocybern Biomed Eng 2020;40(1):426–39. http://dx.doi.org/10.1016/j.bbe.2019.12.007.
  • [47] Mondal A, Banerjee P, Tang H. A novel feature extraction technique for pulmonary sound analysis based on EMD. Comput Methods Programs Biomed 2018;159:199–209. http://dx.doi.org/10.1016/j.cmpb.2018.03.016.
  • [48] Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Math Intell 2005;27(2):83–5. http://dx.doi.org/10.1007/BF02985802.
  • [49] Zhou Z. Machine learning. 1rd ed. Bei Jing: Tsinghua University Press; 2016 [chapter 2].
  • [50] Fox CM, Ramig LO. Vocal sound pressure level and selfperception of speech and voice in men and women with idiopathic Parkinson disease. Am J Speech Lang Pathol 1996;6(2):85. http://dx.doi.org/10.1044/1058-0360.0602.85.
  • [51] Whitfield JA, Goberman AM. Articulatory-acoustic vowel space: application to clear speech in individuals with Parkinson disease. J Commun Disord 2014;51:19–28. http://dx.doi.org/10.1016/j.jcomdis.2014.06.005.
  • [52] PatriciaGillivan-Murphy N, PaulCarding. Voice tremor in Parkinson's disease: an acoustic study. J Voice 2019;33 (1):526–35. http://dx.doi.org/10.1016/j.jvoice.2017.12.010.
  • [53] Zarzur AP, Duarte IS, Goncalves GDNH, Martins MAUR. Laryngeal electromyography and acoustic voice analysis in Parkinson's disease: a comparative study. Braz J Otorhinolaryngol 2010;76(1):40–3. http://dx.doi.org/10.1590/S1808-86942010000100008.
  • [54] Sharma R, Mahadeva Prasanna SR. A better decomposition of speech obtained using modified Empirical Mode Decomposition. Digit Signal Process 2016;58:26–39. http://dx.doi.org/10.1016/j.dsp.2016.07.012.
  • [55] Hayakawa S, Itakura F. Text-dependent speaker recognition using the information in the higher frequency band. IEEE international conference on acoustics speech and signal processing(ICASSP) 1994;1:137–40. http://dx.doi.org/10.1109/ICASSP.1994.389336.
  • [56] Little MA, Varoquaux G, Saeb S, Lonini L, Jayaraman A, Mohr DC, et al. Using and understanding cross-validation strategies. Perspectives on Saeb et al. Giga Science 2017;6(5):1–6. http://dx.doi.org/10.1093/gigascience/gix020.
  • [57] Lamba R, Gulati T, Jain A. Comparative analysis of Parkinson's disease diagnosis system: a review. Advances Math Sci J 2020;9(6):3401–8. http://dx.doi.org/10.37418/amsj.9.6.20.
  • [58] Mahmood A, Muhammad G, Alsulaiman M, Dhahri H, Othman EMA, Faisal M. Moving average multi directional local features for speaker recognition. Cluster Comput 2019;22(1):2145–57. http://dx.doi.org/10.1007/s10586-018-2030-5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a9a8e26-9f88-4f44-a121-c311554d8715
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.