PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element investigation of IGSCC-prone zone in AISI 304L multipass groove welds

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
AISI 304L stainless steel is most commonly used for spent nuclear fuel management; however, the welded joints of this steel are susceptible to intergranular stress corrosion cracking (IGSCC) under the influence of low-temperature sensitization. In the present research, the temperature history of two different groove designs (conventional and narrow groove) has been analyzed to ascertain the propensity of the weld zone to intergranular corrosion (IGC). 3D finite element models (FEMs) have been developed to retrieve the nodal thermal history and predict the region susceptible to IGSCC. The FEM results predicted a lower duration of exposure to the IGC temperature range for narrow groove design as compared to conventional design. The lower duration of exposure exhibits a lower propensity to chromium carbide precipitation and the tendency to IGSCC. The FEM analysis also has been used to observe the difference in the size of the region susceptible to IGSCC in the heat-affected zone of the respective weld designs. The predicted results obtained from the numerical analysis were validated by comparing the chromium carbide precipitation for both the groove designs.
Rocznik
Strony
353--365
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • School of Mechanical Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 752050, India
autor
  • Mechanical Department, IIT Jodhpur, Karwar, Rajasthan 342037, India
  • School of Mechanical Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 752050, India
Bibliografia
  • [1] Verma J, Taiwade RV, Khatirkar RK, Sapate SG, Gaikwad AD. Microstructure, mechanical and intergranular corrosion behavior of dissimilar DSS 2205 and ASS 316L shielded metal arc welds. Trans Indian Inst Met. 2017;70:225–37. https ://doi.org/10.1007/s1266 6-016-0878-8.
  • [2] Xin J, Song Y, Fang C, Wei J, Huang C, Wang S. Evaluation of inter-granular corrosion susceptibility in 316LN austenitic stainless steel weldments. Fusion Eng Des. 2018;133:70–6. https ://doi.org/10.1016/j.fusen gdes.2018.05.078.
  • [3] Kessal BA, Fares C, Meliani MH, Alhussein A, Bouledroua O, François M. Effect of gas tungsten arc welding parameters on the corrosion resistance and the residual stress of heat affected zone. Eng Fail Anal. 2020;107:104200. https ://doi.org/10.1016/j.engfailana l.2019.10420 0.
  • [4] Javidi M, Haghshenas SMS, Shariat MH. CO2 corrosion behavior of sensitized 304 and 316 austenitic stainless steels in 3.5wt%NaCl solution and presence of H2S. Corros Sci. 2020;163:108230.https ://doi.org/10.1016/j.corsc i.2019.10823 0.
  • [5] Lee HT, Te Chen C. Numerical and experimental investigation into effect of temperature field on sensitization of AISI 304 in butt welds fabricated by gas tungsten arc welding. Mater Trans. 2011;52:1506–14. https ://doi.org/10.2320/mater trans .m2011 071.
  • [6] Kou S. Corrosion-resistant materials: stainless steels. In: Kou S, editor. Welding Metallurgy. 2nd ed. Hoboken, New Jersey: Wiley; 2002.
  • [7] Sandusky DW, Okada T, Saito T. Advanced boiling water reactor materials technology. Mater Perform. 1990;29:66–71.
  • [8] Singh PK, Bhasin V, Ghosh AK, Kushwaha HS. Structural integrity of main heat transport system piping of AHWR. BARC News Lett. 2008;299:2–18.
  • [9] Kekkonen T. Metallurgical effects on the corrosion resistance of a low temperature sensitized weld AISI type 304 stainless steel. Corros Sci. 1985;25:821–36.
  • [10] Schmidt CG, Caligiuri RD, Eiselstein LE, Wing SS, Cubicciotti D. Low temperature sensitization of type 304 stainless steel pipe weld heat affected zone. Metall Trans A Phys Metall Mater Sci. 1987;18A:1483–93. https ://doi.org/10.1007/BF026 46660.
  • [11] Singh R., Das G., Suman S., Singh PK. Response of weld joint in stainless steel 304LN pipe to low temperature sensitization. In: IIW IC, Chennai, 2008, pp. 551–556.
  • [12] Hsu CH, Chen TC, Huang RT, Tsay LW. Stress corrosion cracking susceptibility of 304L substrate and 308L weld metal exposed to a salt spray. Materials. 2017;10:1–14. https ://doi.org/10.3390/ma100 20187.
  • [13] Giri A, Mahapatra MM, Sharma K, Singh PK. A study on the effect of weld groove designs on residual stresses in SS 304LN thick multipass pipe welds. Int J Steel Struct. 2017;17:65–75. https ://doi.org/10.1007/s1329 6-016-0118-4.
  • [14] Kim IS, Lee JS, Kimura A. Embrittlement of ER309L stainless steel clad by σ-phase and neutron irradiation. J Nucl Mater. 2004;329–333:607–11. https ://doi.org/10.1016/j.jnucmat.2004.04.104.
  • [15] Nadimi S, Khoushehmehr RJ, Rohani B, Mostafapour A. Investigation and analysis of weld induced residual stresses in two dissimilar pipes by finite element modeling. J Appl Sci. 2008;8:1014–20.
  • [16] Brickstad B, Josefson BL. A parametric study of residua stresses in multi-pass butt-welded stainless steel pipes. Int J Press Vessel Pip. 1998;75:11–25. https ://doi.org/10.1016/S0308-0161(97)00117 -8.
  • [17] Yaghi A, Hyde TH, Becker AA, Sun W, Williams JA. Residua stress simulation in thin and thick-walled stainless steel pipe welds including pipe diameter effects. Int J Press Vessel Pip. 2006;83:864–74. https ://doi.org/10.1016/j.ijpvp .2006.08.014.
  • [18] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat source. Metall Trans B. 1984;15B:299–305.
  • [19] Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci. 2006;37:269–77. https ://doi.org/10.1016/j.commatsci.2005.07.007.
  • [20] Gannon L, Liu Y, Pegg N, Smith M. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates. Mar Struct. 2010;23:385–404. https ://doi.org/10.1016/j.marstruc.2010.05.002.
  • [21] Gery D, Long H, Maropoulos P. Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J Mater Process Technol. 2005;167:393–401. https://doi.org/10.1016/j.jmatp rotec .2005.06.018.
  • [22] Deng D, Kiyoshima S. FEM prediction of welding residual stresses in a SUS304 girth-welded pipe with emphasis on stress distribution near weld start/end location. Komput Mater Sci. 2010;50:612–21. https ://doi.org/10.1016/j.commatsci.2010.09.025.
  • [23] Pandey C. Mechanical and metallurgical characterization of dissimilar P92/SS304 L welded joints under varying heat treatment regimes. Metall Mater Trans A Phys Metall Mater Sci. 2020;51:2126–42. https ://doi.org/10.1007/s1166 1-020-05660 -0.
  • [24] Warikh M, Rashid A, Gakim M, Rosli ZM, Azam MA. Formation of Cr23C6 during the sensitization of AISI 304 stainless steel and its effect to pitting corrosion. Int J Electrochem Sci. 2012;7:9465–77.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a90d3f0-6b04-46bf-8667-1f68287d04e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.