Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this experimental study, semi-circular end collars around semi-circular end abutments and rectangular collars around rectangular abutments were tested in order to investigate the efficiencies of the collars in reducing the local scour depth under unsteady-state clear-water approach flow conditions. Experiments were conducted in a rectangular sediment channel having a sediment pool filled with uniform sand as the bed material. Three different abutment lengths having constant widths were tested under three distinct successive flow intensities that were applied continuously for a duration of 2 h during each experiment. Varying sizes of collars were located at different elevations relative to the bed level. The effect of abutment length, collar width, collar elevation, flow intensity and temporal variation on local scour reduction performances of collars were tested. According to the experimental results, it can be stated that the application of collars around the semi-circular end and rectangular bridge abutments decreases the local scour depth by up to 72% and 51%, respectively. In addition, semi-circular end collars around semi-circular end abutments gave better results in reducing the scour depths than rectangular collars around rectangular abutments. Best collar performances were generally achieved for the largest collar width located around the bed level for semi-circular end abutments and below the bed level for rectangular abutments.
Wydawca
Czasopismo
Rocznik
Tom
Strony
729--753
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
autor
- Hydraulics Laboratory, Department of Civil Engineering, Middle East Technical University, 06800 Ankara, Turkey
autor
- Department of Civil Engineering, ęankaya University, 06790 Ankara, Turkey
autor
- Hydraulics Laboratory, Department of Civil Engineering, Middle East Technical University, 06800 Ankara, Turkey
Bibliografia
- 1. Alabi PD (2006) Time development of local scour at a bridge pier fitted with a collar. Master Thesis, University of Saskatchewan
- 2. Bombar G (2020) Scour evolution around bridge piers under hydrographs with high unsteadiness. Iran J Sci Technol Trans Civ Eng 44:325-337. https://doi.org/10.1007/s40996-019-00321-8
- 3. Barbhuiya AK, Dey S (2004) Local scour at abutments: a review. Sadhana 29:449-476. https://doi.org/10.1007/BF02703255
- 4. Borghei SM, Kabiri-Samani A, Banihashem SA (2012) Influence of unsteady flow hydrograph shape on local scouring around bridge pier. Proc Inst Civ Eng Water Manag 165:473-480. https://doi.org/10.1680/wama.11.00020
- 5. Cao X, Gu Z (2015) Three classification criteria and their comparison impact scale between double non-submerged spur dikes. J Zhejiang Univ 49:200-207
- 6. Coleman SE, Lauchlan CS, Melville BW (2003) Developpement de l’affouillement en eau claire aux butees de pont. J Hydraul Res 41:521-531. https://doi.org/10.1080/00221680309499997
- 7. Dey S, Barbhuiya AK (2005) Time variation of scour at abutments. J Hydraul Eng 131:11-23. https://doi.org/10.1061/(asce)0733-9429(2005)131:1(11)
- 8. Dey Subhasish B, Sumer M, Freds0e J (2006) Control of scour at vertical circular piles under waves and current. J Hydraul Eng 132:270-279. https://doi.org/10.1061/ASCE0733-94292006132:3270
- 9. Farshad R, Kashefipour SM, Ghomeshi M, Oliveto G (2022) Temporal scour variations at permeable and angled spur dikes under steady and unsteady flows. Water (switzerland) 14:3310. https://doi.org/10.3390/w14203310
- 10. Gokmener S (2023) Effect of flow intensity and collars on scour depths around bridge abutments. Doctoral Thesis, Middle East Technical University
- 11. Gogus M, Dogan AE (2010) Effects of collars on scour reduction at bridge abutments. In: Scour and Erosion. pp 997-1007
- 12. Gokmener S, Gogus M (2022) Local scour evolution around semicircular end bridge abutment in quasi-unsteady condition. Proc Inst Civ Eng Water Manag 175:163-177. https://doi.org/10.1680/jwama.20.00072
- 13. Gaudio R, Tafarojnoruz A, Calomino F (2012) Combined flow-altering countermeasures against bridge pier scour. J Hydraul Res 50:35- 43. https://doi.org/10.1080/00221686.2011.649548
- 14. Grimaldi C, Gaudio R, Calomino F, Cardoso AH (2009) Countermeasures against local scouring at bridge piers: slot and combined system of slot and bed sill. J Hydraul Eng 135:425-431. https://doi.org/10.1061/ASCEHY.1943-7900.0000035
- 15. Gu Z, Cao X, Gu Q, Lu WZ (2020) Exploring proper spacing threshold of non-submerged spur dikes with ipsilateral layout. Water (switzerland) 12:172. https://doi.org/10.3390/w12010172
- 16. Gogus M, Daskin S, Gokmener S (2023) Effects of collars on local scour around semi-circular end bridge abutments. Proc Inst Civ Eng Water Manag. https://doi.org/10.1680/jwama.21.00011
- 17. Gupta LK, Pandey M, Anand Raj P (2023a) Numerical simulation of local scour around the pier with and without airfoil collar (AFC) using FLOW-3D. Environ Fluid Mech. https://doi.org/10.1007/s10652-023-09932-2
- 18. Gupta LK, Pandey M, Raj PA (2023b) Impact of airfoil collar on scour reduction around the bridge pier. Ocean Eng 290:116271. https://doi.org/10.1016/j.oceaneng.2023.116271
- 19. Gupta LK, Pandey M, Raj PA, Pu JH (2023c) Scour reduction around bridge pier using the airfoil-shaped collar. Hydrology 10:77. https://doi.org/10.3390/hydrology10040077
- 20. Hager WH, Unger J (2010) Bridge pier scour under flood waves. J Hydraul Eng 136:842-847. https://doi.org/10.1061/ASCEHY.1943-7900.0000281
- 21. Hosseinjanzadeh H, Khozani ZS, Ardeshir A, Singh VP (2021) Experimental investigation into the use of collar for reducing scouring around short abutments. ISH J Hydraul Eng 27:616-632
- 22. Imhof D (2004) Risk assessment of existing bridge structures. Doctoral Thesis, University of Cambridge
- 23. Johnson PA, Hey RD, Tessier M, Rosgen DL (2001) Use of vanes for control of scour at vertical wall abutments. J Hydraul Eng 127:772-778
- 24. Kandasamy JK, Melville BW (1998) Maximum local scour depth at bridge piers and abutments. J Hydraul Res 36:183-198. https://doi.org/10.1080/00221689809498632
- 25. Kassem H, El-Masry AA, Diab R (2023) Influence of collar’s shape on scour hole geometry at circular pier. Ocean Eng 287:115791. https://doi.org/10.1016/j.oceaneng.2023.115791
- 26. Khosravinia P, Malekpour A, Hosseinzadehdalir A, Farsadizadeh D (2018) Effect of trapezoidal collars as a scour countermeasure around wing-wall abutments. Water Sci Eng 11:53-60. https://doi.org/10.1016/j.wse.2018.03.001
- 27. Kothyari UC, Ranga Raju KG (2001) Scour around spur dikes and bridge abutments. J Hydraul Res 39:367-374. https://doi.org/10.1080/00221680109499841
- 28. Kumar V, Ranga Raju KG, Vittal N (1999) Reduction of local scour around bridge piers using slots and collars. J Hydraul Eng 125:1302-1305. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1302)
- 29. Kumcu §Y, Gogu§ M, Kokpinar MA (2007) Temporal scour development at bridge abutments with a collar. Can J Civ Eng 34:549- 556. https://doi.org/10.1139/L06-146
- 30. Kumcu SY, Kokpinar MA, Gogus M (2014) Scour protection around vertical-wall bridge abutments with collars. KSCE J Civ Eng 18:1884-1895. https://doi.org/10.1007/s12205-014-0245-4
- 31. Li H (2005) Countermeasures against scour at bridge abutments. Doctoral Thesis, Michigan Technological University
- 32. Li H, Barkdoll B, Kuhnle R (2005) Bridge abutment collar as a scour countermeasure. In: Impacts of global climate change. pp 1-12
- 33. Li H, Kuhnle RA, Barkdoll BD (2006) Countermeasures against scour at abutments. National Sedimentation Laboratory
- 34. Melville BW (1992) Local scour at bridge abutments. J Hydraul Eng 118:615-631. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(615)
- 35. Melville BW, Chiew Y-M (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125:59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
- 36. Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publication
- 37. Moncada-M AT, Aguirre-Pe J, Bolívar JC, Flores EJ (2009) Scour protection of circular bridge piers with collars and slots. J Hydraul Res 47:119-126. https://doi.org/10.3826/jhr.2009.3244
- 38. Mashahir M, Zarrati AR, Karimaei Tabarestani M (2024) Evaluation of collar efficiency to prevent scouring around cylindrical bridge
- 39. piers under live bed condition. J Hydro-Environ Res 52:17-25. https://doi.org/10.1016/j.jher.2023.12.001
- 40. Oliveto G, Hager WH (2002) Temporal evolution of clear-water pier and abutment scour. J Hydraul Eng 128:811-820. https://doi.org/10.1061/ASCE0733-94292002128:9811
- 41. Oliveto G, Hager WH (2005) Further results to time-dependent local scour at bridge elements. J Hydraul Eng 131:97-105. https://doi.org/10.1061/(asce)0733-9429(2005)131:2(97)
- 42. Pandey M, Azamathulla HM, Chaudhuri S et al (2020) Reduction of time-dependent scour around piers using collars. Ocean Eng 213:107692. https://doi.org/10.1016/j.oceaneng.2020.107692
- 43. Richardson EV, Davis SR (2001) Evaluating scour at bridges (No.
- 44. FHWA-NHI-01-001). United States.’Federal Highway Administration. Office of Bridge. Technology (Singap World Sci)
- 45. Raikar RV, Hong JH, Deshmukh AR, Guo WD (2022) Parametric study on abutment scour under unsteady flow. Water (switzerland) 14:1820. https://doi.org/10.3390/w14111820
- 46. Shampa, Hasegawa Y, Nakagawa H et al (2020) Three-dimensional flow characteristics in slit-type permeable spur dike fields: efficacy in riverbank protection. Water (switzerland) 12:964. https://doi.org/10.3390/W12040964
- 47. Tekin F (2012) Local scour characteristics around semi-circular end bridge abutments with and without collars. Master Thesis, Middle East Technical University
- 48. Tabarestani MK, Zarrati AR (2017) Local scour calculation around bridge pier during flood event. KSCE J Civ Eng 21:1462-1472. https://doi.org/10.1007/s12205-016-0986-3
- 49. Tabarestani MK, Zarrati AR (2019) Local scour depth at a bridge pier protected by a collar in steady and unsteady flow. Proc Inst Civ Eng Water Manag 172:301-311. https://doi.org/10.1680/jwama.18.00061
- 50. Tafarojnoruz A, Gaudio R, Dey S (2010) Flow-altering countermeasures against scour at bridge piers: a review. J Hydraul Res 48:441- 452. https://doi.org/10.1080/00221686.2010.491645
- 51. Tafarojnoruz A, Gaudio R, Calomino F (2012) Evaluation of flowaltering countermeasures against bridge pier scour. J Hydraul Eng 138:297-305. https://doi.org/10.1061/(asce)hy.1943-7900.0000512
- 52. Valela C, Nistor I, Rennie CD et al (2021) Hybrid modeling for design of a novel bridge pier collar for reducing scour. J Hydraul Eng 147:04021012. https://doi.org/10.1061/(asce)hy.1943-7900.0001875
- 53. Valela C, Rennie CD, Nistor I (2022) Improved bridge pier collar for reducing scour. Int J Sedim Res 37:37-46. https://doi.org/10. 1016/j.ijsrc.2021.04.004
- 54. Wang C, Yu X, Liang F (2017) A review of bridge scour: mechanism, estimation, monitoring and countermeasures. Nat Hazards 87:1881-1906. https://doi.org/10.1007/s11069-017-2842-2
- 55. Wang S, Wei K, Shen Z, Xiang Q (2019) Experimental investigation of local scour protection for cylindrical bridge piers using anti-scour collars. Water (switzerland) 11:1515. https://doi.org/10.3390/w11071515
- 56. Yilmaz K (2014) Application of collars as a scour countermeasure for spill-through abutments. Master Thesis, Middle East Technical University
- 57. Zarrati AR, Chamani MR, Shafaie A, Latifi M (2010) Scour countermeasures for cylindrical piers using riprap and combination of collar and riprap. Int J Sediment Res 25:313-322. https://doi.org/10.1016/S1001-6279(10)60048-0
- 58. Zarrati AR, Gholami H, Mashahir MB (2004) Application of collar to control scouring around rectangular bridge piers. J Hydraul Res. https://doi.org/10.1080/00221686.2004.9641188
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a8c6abc-c968-42a9-a3a7-395b844c74fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.