PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Increasing the operational reliability of a ship by using a composite impeller in the event of hydrophore pump failure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The time-consuming technological process of manufacturing impellers and the high production costs are the reason for the search for alternative materials and manufacturing methods. In this paper, based on a literature analysis, the performance of a pump with an impeller that was manufactured by an incremental method from polyethylene terephthalate with an admixture of glycol and carbon fibre (PETG CF) was selected and studied. Operation tests were conducted on the ship’s rotodynamic pump test bench. The composite impeller pump was shown to have an efficiency at the selected printing parameters of 26,23%, comparable to a tin bronze impeller, which has an efficiency of 27,7%. The maximum pump useful power with the impellers tested was 337 W at a flow rate of 4.42 m3/h. The results confirm that, with a filament layer height of 0.12 mm and 100% fill in the four print contours, the pump characteristics obtained are consistent with those of the reference impeller. This fact ensures continuous operation of the ship’s pump for 48 hours which makes the chosen manufacturing method a reliable emergency method of impeller repair in offshore operations.
Rocznik
Strony
art. no. 18
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
  • Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Jana Śmidowicza 69 str., 81-127 Gdynia, Poland
  • Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Jana Śmidowicza 69 str., 81-127 Gdynia, Poland
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Tysiąclecia Państwa Polskiego 7 str., 25-314 Kielce, Poland
  • Silesian University of Technology, Faculty of Mechanical Engineering, Materials Research Laboratory, Konarskiego 18A str., 44-100 Gliwice, Poland
Bibliografia
  • 1. Asomani S N, Yuan J, Wang L et al. Geometrical effects on performance and inner flow characteristics of a pump-as-turbine: A review. Advances in Mechanical Engineering 2020. doi:10.1177/1687814020912149, https://doi.org/10.1177/1687814020912149.
  • 2. Barletta M, Gisario A, Mehrpouya M. 4D printing of shape memory polylactic acid (PLA) components: Investigating the role of the operational parameters in fused deposition modelling (FDM). Journal of Manufacturing Processes 2021; 61: 473–480, https://doi.org/10.1016/j.jmapro.2020.11.036.
  • 3. Dutta B, Froes F H. Additive Manufacturing Technology. Additive Manufacturing of Titanium Alloys, Elsevier: 2016: 25–40, https://doi.org/10.1016/B978-0-12-804782-8.00003-3.
  • 4. Górski Zygmunt, Perepeczko Andrzej. Pompy okrętowe. Gdynia Studium Doskonalenia Kadr S.C. WSM: 1996.
  • 5. Gunaydin K, Türkmen H. Common FDM 3D Printing Defects. International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry. 2018.
  • 6. Jędral W, Politechnika Warszawska, Oficyna Wydawnicza. Pompy wirowe. Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej: 2014.
  • 7. Joswig L, Vellekoop M J, Lucklum F. Miniature 3D-Printed Centrifugal Pump with Non-Contact Electromagnetic Actuation. Micromachines 2019; 10(10): 631, https://doi.org/10.3390/mi10100631.
  • 8. Kun K. Reconstruction and Development of a 3D Printer Using FDM Technology. Procedia Engineering 2016; 149: 203–211, https://doi.org/10.1016/j.proeng.2016.06.657.
  • 9. Lu Z X. Study and Development on Safety Operation of Marine Pump. Advanced Materials Research 2013; 734–737: 2681–2684, https://doi.org/10.4028/www.scientific.net/AMR.734-737.2681.
  • 10. Malik A, Zheng Q, Zaidi A A, Fawzy H. Performance Enhancement of Centrifugal Compressor with Addition of Splitter Blade Close to Pressure Surface. Journal of Applied Fluid Mechanics 2018; 11(4): 919–928. https://doi.org/10.29252/jafm.11.04.28658
  • 11. Muzaffar A, Ahamed M B, Deshmukh K et al. 3D and 4D printing of pH-responsive and functional polymers and their composites. 3D and 4D Printing of Polymer Nanocomposite Materials, Elsevier: 2020: 85–117, https://doi.org/10.1016/B978-0-12-816805-9.00004-1.
  • 12. Novakova-Marcincinova L, Novak-Marcincin J, Barna J, Torok J. Special materials used in FDM rapid prototyping technology application. 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), 2012: 73–76, https://doi.org/10.1109/INES.2012.6249805.
  • 13. Ponticelli G S, Tagliaferri F, Venettacci S et al. Re-Engineering of an Impeller for Submersible Electric Pump to Be Produced by Selective Laser Melting. Applied Sciences 2021; 11(16): 7375, https://doi.org/10.3390/app11167375.
  • 14. Rinaldi M, Caterino M, Manco P et al. The impact of Additive Manufacturing on Supply Chain design: a simulation study. Procedia Computer Science 2021; 180: 446–455, https://doi.org/10.1016/j.procs.2021.01.261.
  • 15. Ruiz C, Kadimisetty K, Yin K et al. Fabrication of Hard–Soft Microfluidic Devices Using Hybrid 3D Printing. Micromachines 2020; 11(567): 567, https://doi.org/10.3390/mi11060567.
  • 16. Sheikh A K, Younas M, Matar D, Al-Anazi D. Weibull analysis of time between failures of pumps used in an oil refinery. 2003.
  • 17. Siemiński P, Budzik G, Politechnika Warszawska, Oficyna Wydawnicza. Techniki przyrostowe: druk drukarki 3D. Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej: 2015.
  • 18. Singh D, Suhane D A, Thakur M K. The Study of Failure Analysis of Centrifugal Pump on the Basis of Survey. 2013; 4(6): 3.
  • 19. Smith D W, Crawford J, Moore P S. Marine Auxiliary Machinery. Elsevier: 2016.
  • 20. Svetlizky D, Das M, Zheng B et al. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges, and applications. Materials Today 2021: S1369702121001139, https://doi.org/10.1016/j.mattod.2021.03.020.
  • 21. Voet Vincent S. D., Strating T., Schnelting Geraldine H. M. et al. Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing. ACS Omega 2018 3 (2), 1403-1408, https://doi.org/ 10.1021/acsomega.7b01648
  • 22. Vyatskikh, A., Delalande, S., Kudo, A. et al. Additive manufacturing of 3D nano-architected metals. Nature Communications 9, 593 (2018). https://doi.org/10.1038/s41467-018-03071-9
  • 23. Wang P, Sin W, Nai M, Wei J. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting. Materials 2017; 10(10): 1121, https://doi.org/10.3390/ma10101121.
  • 24. Wełnicki W. Mechanika ruchu okrętu. Gdańsk, Politechnika Gdańska: 1989.
  • 25. Yang, Y., Chen, Y., Wei, Y. et al. 3D printing of shape memory polymer for functional part fabrication. The International Journal of Advanced Manufacturing Technology 84, 2079–2095 (2016). https://doi.org/10.1007/s00170-015-7843-2
  • 26. Ziółkowski M, Dyl T. Possible Applications of Additive Manufacturing Technologies in Shipbuilding: A Review. Machines 2020; 8(4): 84, https://doi.org/10.3390/machines8040084.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a832d02-e5ba-4415-98c0-2c95f6676d42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.