Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study focuses on evaluating microbial activity in Main Dolomite reservoir rocks (Zechstein, Wuchiapingian– Permian) at 100°C. Core samples from two wells, one potentially microbiologically active (C-1 well, 100°C) and the other considered inactive due to high temperature (L-1 well, 155.5°C), were analysed. The core from L-1, treated similarly to C-1, was used to control for contamination. Microbial experiments and molecular analyses were performed on both core samples to ensure accurate results unaffected by laboratory processing contamination. Microbial incubation tests were successfully employed to demonstrate microbial hydrocarbon degradation and methane formation from 13C-labelled acetate. A new method for staining microorganisms from rock samples was introduced to estimate biomass. The results indicated that microorganisms from the C-1 well exhibited both hydrocarbon biodegradation and acetoclastic methanogenesis during a 3-month incubation at 100°C. Fluorescence-stained and countable microorganisms were only observed in the C-1 samples, while no biodegradation or methanogenesis occurred in reference samples from L-1 well. The study provides valuable insights into microbial activities in extreme conditions, emphasizing the importance of proper controls and techniques to ensure accurate interpretation of results.
Czasopismo
Rocznik
Tom
Strony
art. no. e32
Opis fizyczny
Bibliogr. 63 poz., rys., wykr.
Twórcy
autor
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow
autor
- Exploration and Production Branch in Warsaw, Polish Oil and Gas Company, Orlen SA
autor
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow
autor
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow
autor
- University of Warsaw, Faculty of Geology
Bibliografia
- 1. Aitchison, J. 1982. The Statistical Analysis of Compositional Data. Journal of the Royal Statistical Society. Series B (Methodological), 44, 139–177.
- 2. Andersson, R.A., Kuhry, P., Meyers, P., Zebühr, Y., Crill, P. and Mörth, M. 2011. Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic. Organic Geochemistry, 42, 1065–1075.
- 3. Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J.R., Maciejewski, A. and Wishart, D.S. 2016. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Research, 44, W147–W153.
- 4. Bayal, N., Nagpal, S., Haque, M.M., Patole, M.S., Valluri, V., Suryavanshi, R., Mande, S.S. and Mande, S.C. 2019. 16S rDNA based skin microbiome data of healthy individuals and leprosy patients from India. Scientific Data, 6, 225.
- 5. Beulig, F., Schubert, F., Adhikari, R.R., Glombitza, C., Heuer V.B., Hinrichs, K.-U., Homola, K.L., Inagaki, F., Jørgensen, B.B., Kallmeyer, J., Krause, S.J.E., Morono, Y., Sauvage, J., Spivack, A.J. and Treude, T. 2022. Rapid metabolism fosters microbial survival in the deep, hot subseafloor biosphere. Nature Communications, 13, 312.
- 6. Bilkiewicz, E. and Kowalski, T. 2020. Origin of hydrocarbon and non-hydrocarbon (H2S, CO2 and N2) components of natural gas accumulated in the Zechstein Main Dolomite (Ca2) strata in SW part of the Polish Permian Basin: stable isotope and hydrous pyrolysis studies. Journal of Petroleum Science and Engineering, 192, 107296.
- 7. Borkowski, A., Syczewski, M. and Czarnecka-Skwarek, A. 2019. Ionic liquids strongly affect the interaction of bacteria with magnesium oxide and silica nanoparticles. RSC Advances, 9, 28724–28734.
- 8. Brocks, J.J., Grosjean, E. and Logan, G.A. 2008. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta, 72, 871–888.
- 9. Bushnell, B., Rood, J. and Singer, E. 2017. BBMerge – Accurate paired shotgun read merging via overlap. PLOS ONE, 12, e0185056.
- 10. Chapelle, F.H. and Lovley, D.R. 1990. Rates of Microbial Metabolism in Deep Coastal Plain Aquifers. Applied and Environmental Microbiology, 56, 1865–1874.
- 11. Chen, S., Zhou, Y., Chen, Y. and Gu, J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, i884–i890.
- 12. Cokar, M.., Kallos, M.S., Huang, H.., Larter, S.R. and Gates, I.D. 2010. Biogenic Gas Generation From Shallow Organic-Matter-Rich Shales. In: Canadian Unconventional Resources and International Petroleum Conference. Paper SPE-135323-MS.
- 13. Cokar, M., Ford, B., Kallos, M.S. and Gates, I.D. 2013a. New gas material balance to quantify biogenic gas generation rates from shallow organic-matter-rich shales. Fuel, 104, 443–451.
- 14. Cokar, M., Ford, B., Gieg, L.M., Kallos, M.S. and Gates, I.D. 2013b. Reactive Reservoir Simulation of Biogenic Shallow Shale Gas Systems Enabled by Experimentally Determined Methane Generation Rates. Energy & Fuels, 27, 2413–2421.
- 15. Colman, D.R., Poudel, S., Stamps, B.W., Boyd, E.S. and Spear, J.R. 2017. The deep, hot biosphere: Twenty-five years of retrospection. Proceedings of the National Academy of Sciences, 114, 6895–6903.
- 16. Colwell, F.S., Onstott, T.C., Delwiche, M.E., Chandler, D., Fredrickson, J.K., Yao, Q.-J., McKinley, J.P., Boone, D.R., Griffiths, R., Phelps, T.J., Ringelberg, D., White, D.C., La-Freniere, L., Balkwill, D., Lehman, R.M., Konisky, J. and Long, P.E. 1997. Microorganisms from deep, high temperature sandstones: constraints on microbial colonization. FEMS Microbiology Reviews, 20, 425–435.
- 17. Dai, X., Wang, Y., Luo, L., Pfiffner, S.M., Li, G., Dong, Z., Xu, Z., Dong, H. and Huang, L. 2021. Detection of the deep biosphere in metamorphic rocks from the Chinese continental scientific drilling. Geobiology, 19, 278–291.
- 18. de la Torre, J.R., Walker, C.B., Ingalls, A.E., Könneke, M. and Stahl, D.A. 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology, 10, 810–818.
- 19. Friese, A., Kallmeyer, J., Axel Kitte, J., Montaño Martínez, I., Bijaksana, S., Wagner, D., and the ICDP Lake Chalco Drilling Science Team and the ICDP Towuti Drilling Science Team. 2017. A simple and inexpensive technique for assessing contamination during drilling operations: A simple and inexpensive technique. Limnology and Oceanography: Methods, 15, 200–211.
- 20. Grosjean, E. and Logan, G.A. 2007. Incorporation of organic contaminants into geochemical samples and an assessment of potential sources: Examples from Geoscience Australia marine survey S282. Organic Geochemistry, 38, 853–869.
- 21. Heuer, V., Lever, M., Morono, Y. and Teske, A. 2019. The Limits of Life and the Biosphere in Earth’s Interior. Oceanography, 32, 208–211.
- 22. Heuer, V.B., Inagaki, F., Morono, Y., Kubo, Y., Spivack, A.J., Viehweger, B., Treude, T., Belig, F., Schubotz, F., Tonai, S., Bowden, S.A., Cramm, M., Henkel, S., Hirose, T., Homola, K., Hoshino, T., Ijiri, A., Imachi, H., Kamiya, N., Kaneko, M., Lagostina, L., Manners, H., McClelland, H.-L., Metcalfe, K., Okutsu, N., Pan, D., Reudsepp, M.J., Sauvage, J., Tsang, M.-Y., Wang, D.T., Whitaker, E., Yamamoto, Y., Yang, K., Maeda, L., Adhikari, R.R., Glombitza, C., Hamada, Y., Kallmeyer, J., Wendt, J., Wörmer, L., Yamada, Y., Kinoshita, M. and Hinrichs, K.-U. 2020. Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science, 370, 1230–1234.
- 23. Inagaki, F., Hinrichs, K.-U., Kubo, Y., Bowles, M.W., Heuer, V.B., Hong, W.-L., Hoshino, T., Ijiri, A., Imachi, H., Ito, M., Kaneko, M., Lever, M.A., Lin, Y.-S., Methé, B.A., Morita, S., Morono, Y., Tanikawa, W., Bihan, M., Bowden, S.A., Elvert, M., Glombitza, C., Gross, D., Harrington, G.J., Hori, T., Li, K., Limmer, D., Liu, C.-H., Murayama, M., Ohkouchi, N., Ono, S., Park, Y.-S., Phillips, S.C., Prieto-Mollar, X., Purkey, M., Riedinger, N., Sanada, Y., Sauvage, J., Snyder, G., Susilawati, R., Takano, Y., Tasumi, E., Terada, T., Tomaru, H., Trembath-Reichert, E., Wang, D.T. and Yamada, Y. 2015. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 349, 420–424.
- 24. Jørgensen, B.B. 2011. Deep subseafloor microbial cells on physiological standby. Proceedings of the National Academy of Sciences, 108, 18193–18194.
- 25. Karhadkar, P.P., Audic, J.-M., Faup, G.M. and Khanna, P. 1987. Sulfide and sulfate inhibition of methanogenesis. Water Research, 21, 1061–1066.
- 26. Kashefi, K. and Lovley, D.R. 2003. Extending the Upper Temperature Limit for Life. Science, 301, 934–934.
- 27. Keshri, J., Mankazana, B.B.J. and Momba, M.N.B. 2015. Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform. Applied Microbiology and Biotechnology, 99, 3233–3242.
- 28. Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M. and Glöckner, F.O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41 (1), e1.
- 29. Kotarba, M. and Wagner, R. 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski-Międzychód-Lubiatów area: geological and geochemical approach to microbial-algal source rock. Przegląd Geologiczny, 55, 12.
- 30. Kotarba, M.J., Bilkiewicz, E. and Kosakowski, P. 2020. Origin of hydrocarbon and non-hydrocarbon (H2S, CO2 and N2) components of natural gas accumulated in the Zechstein Main Dolomite carbonate reservoir of the western part of the Polish sector of the Southern Permian Basin. Chemical Geology, 554, 119807.
- 31. Krzywiec, P., Peryt, T.M., Kiersnowski, H., Pomianowski, P., Czapowski, G. and Kwolek, K. 2017. Permo-Triassic evaporites of the Polish Basin and their bearing on the tectonic evolution and hydrocarbon system, an overview. In: Soto, J., Flinch, J. and Tari, G. (Eds), Permo-Triassic salt provinces of Europe, North Africa and the Central Atlantic: Tectonics and hydrocarbon potential, 243–261. Elsevier ;Amsterdam.
- 32. Kushkevych, I., Dordević, D. and Vítězová, M. 2019. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Archives of Microbiology, 201, 389–397.
- 33. Kynčlová, P., Hron, K. and Filzmoser, P. 2017. Correlation Between Compositional Parts Based on Symmetric Balances. Mathematical Geosciences, 49, 777–796.
- 34. Li, P., Zhou, S., Ji, B., Liu, X., Li, J., Zhang, X., Huang, J. and Ma, Y. 2021. Water-soluble organic acids in sedimentary rocks: Compositions and influencing factors. Journal of Natural Gas Geoscience, 6, 173–181.
- 35. Lovley, D.R. and Klug, M.J. 1983. Sulfate Reducers Can Outcompete Methanogens at Freshwater Sulfate Concentrationst. Applied and Environmental Microbiology, 45, 6.
- 36. Lovley, D.R. and Phillips, E.J.P. 1987. Competitive Mechanisms for Inhibition of Sulfate Reduction and Methane Production in the Zone of Ferric Iron Reduction in Sediments. Applied and Environmental Microbiology, 53, 2636–2641.
- 37. Lu, J., Rincon, N., Wood, D.E., Breitwieser, F.P., Pockrandt, C., Langmead, B., Salzberg, S.L. and Steinegger, M. 2022. Metagenome analysis using the Kraken software suite. Nature Protocols, 17, 2815–2839.
- 38. McInerney, M.J., Bryant, M.P. and Pfennig, N. 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Archives of Microbiology, 122, 129–135.
- 39. Merino, N., Aronson, H.S., Bojanova, D.P., Feyhl-Buska, J., Wong, M.L., Zhang, S. and Giovannelli, D. 2019. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Frontiers in Microbiology, 10, 780.
- 40. Middelboe, M., Glud, R. and Filippini, M. 2011. Viral abundance and activity in the deep sub-seafloor biosphere. Aquatic Microbial Ecology, 63, 1–8.
- 41. Morono, Y. and Inagaki, F. 2016. Analysis of Low-Biomass Microbial Communities in the Deep Biosphere. Advances in Applied Microbiology, 95, 149–178.
- 42. Morono, Y., Ito, M., Hoshino, T., Terada, T., Hori, T., Ikehara, M., D’Hondt, S. and Inagaki, F. 2020. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nature Communications, 11, 3626.
- 43. Ollivier, B. and Magot, M. (Eds). 2005. Petroleum Microbiology, 350 pp. ASM Press, Washington, D.C.
- 44. Onstott, T.C., Phelps, T.J., Colwell, F.S., Ringelberg, D., White, D.C., Boone, D.R., Mckinley, J.P., Stevens, T.O., Long, P.E., Balkwill, D.L., Griffin, W.T. and Kieft, T. 1998. Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiology Journal, 15, 353–385.
- 45. Oremland, R.S., Marsh, L.M. and Polcin, S. 1982. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature, 296, 143–145.
- 46. Pellizzari, L., Neumann, D., Alawi, M., Voigt, D., Norden, B. and Würdemann, H. 2013. The use of tracers to assess drillmud penetration depth into sandstone cores during deep drilling: method development and application. Environmental Earth Sciences, 70, 3727–3738.
- 47. Peryt, T.M., Geluk, M., Mathiesen, A., Paul, J. and Smith, K. 2010. Zechstein. In: Doornenbal, H. and Stevenson, A. (Eds), Petroleum Geological Atlas of the Southern Permian Basin Area, 123–147. EAGE Publications; Houten.
- 48. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glöckner, F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590–D596.
- 49. Quinn, T.P., Erb, I., Gloor, G., Notredame, C., Richardson, M.F. and Crowley, T.M. 2019. A field guide for the compositional analysis of any-omics data. GigaScience, 8, giz107.
- 50. Sahu, R.P., Kazy, S.K., Bose, H., Mandal, S., Dutta, A., Saha, A., Roy, S., Dutta Gupta, S., Mukherjee, A. and Sar, P. 2022. Microbial diversity and function in crystalline basement beneath the Deccan Traps explored in a 3 km bore-hole at Koyna, western India. Environmental Microbiology, 24, 2837–2853.
- 51. Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt, M.F., Turner, P., Parkhill, J., Loman, N.J. and Walker, A.W. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology, 12, 87.
- 52. Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., Tse, T., Wang, J., Williams, R., Trawick, B.W., Pruitt, K.D. and Sherry, S.T. 2022. Database resources of the national center for biotechnology information. Nucleic Acids Research, 50, D20–D26.
- 53. Schouten, S., Hopmans, E.C. and Sinninghe Damsté, J.S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry, 54, 19–61.
- 54. Sinninghe Damsté, J.S., Schouten, S., Hopmans, E.C., van Duin, A.C.T. and Geenevasen, J.A.J. 2002. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research, 43, 1641–1651.
- 55. Stinson, L.F., Keelan, J.A. and Payne, M.S. 2019. Identification and removal of contaminating microbial DNA from PCR reagents: impact on low-biomass microbiome analyses. Letters in Applied Microbiology, 68, 2–8.
- 56. The Human Microbiome Project Consortium. 2012a. A framework for human microbiome research. Nature, 486, 215–221.
- 57. The Human Microbiome Project Consortium. 2012b. Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.
- 58. Tsesmetzis, N., Alsop, E.B., Vigneron, A., Marcelis, F., Head, I.M. and Lomans, B.P. 2018. Microbial community analysis of three hydrocarbon reservoir cores provides valuable insights for the assessment of reservoir souring potential. International Biodeterioration & Biodegradation, 126, 177–188.
- 59. Wandrey, M., Morozova, D., Zettlitzer, M. and Würdemann, H. 2010. Assessing drilling mud and technical fluid contamination in rock core and brine samples intended for microbiological monitoring at the CO2 storage site in Ketzin using fluorescent dye tracers. International Journal of Greenhouse Gas Control, 4, 972–980.
- 60. Wear, E.K., Wilbanks, E.G., Nelson, C.E. and Carlson, C.A. 2018. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton: Primer choice effects on populations, communities. Environmental Microbiology, 20, 2709–2726.
- 61. Wood, D.E., Lu, J. and Langmead, B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biology, 20, 257.
- 62. Zhang, G., Dong, H., Jiang, H., Xu, Z. and Eberl, D.D. 2006. Unique Microbial Community in Drilling Fluids from Chinese Continental Scientific Drilling. Geomicrobiology Journal, 23, 499–514.
- 63. Zoback, M. 2007. Reservoir Geomechanics, 449 pp. Cambridge University Press; Cambridge.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a7c976a-db58-45f3-bba7-5b5f53d7c916
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.