PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel approach for the destress blasting in hard rock underground copper mines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates the possibility of developing a novel method for reducing seismicity and rockbursts in deep underground mines based on modifying drilling and blasting patterns. The main goal was to develop and implement firing patterns for multi-face production blasting, which allow increasing the capability of inducing stress relief in the rock mass, manifested in the seismic event. This method may improve stability control in underground workings, and mitigate risks associated with the dynamic effects of rock mass pressure compared with currently used methods. Thus, the seismic energy may be released immediately after blasting in a controlled way. For this purpose, underground tests using modified blasting patterns and precise electronic detonators were carried out. Vibration data recorded from the multi-face blasting in the considered trial panels were assessed in the scope of amplitude distribution. Results of trials have proven that the method is promising and should be further developed to improve the effectiveness of rockburst prevention in deep hard rock mines.
Rocznik
Strony
141--154
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • KGHM CUPRUM Ltd. Research and Development Centre, Department of Rock Engeenering, 2-8 Sikorskiego Street, 53-659 Wrocław, Poland
  • KGHM CUPRUM Ltd. Research and Development Centre, Department of Rock Engeenering, 2-8 Sikorskiego Street, 53-659 Wrocław, Poland
  • KGHM CUPRUM Ltd. Research and Development Centre, Department of Rock Engeenering, 2-8 Sikorskiego Street, 53-659 Wrocław, Poland
  • KGHM Polska Miedź S.A., Mining Department, 48 Skłodowskiej-Curie Street, 59-301 Lubin, Poland
Bibliografia
  • [1] He M, Xia H, Jia X, Gong W, Zhao F, Liang K. Studies on classification, criteria and control of rockbursts. J Rock Mech Geotech Eng 2012;4(2):97-114. https://doi.org/10.3724/SP.J.1235.2012.00097.
  • [2] Zhou N, Liu H, Zhang J, Yan H. Study on rock burst event disaster and prevention mechanisms of hard roof. Adv Civ Eng 2019:6910139. https://doi.org/10.1155/2019/6910139.
  • [3] Hebblewhite B. Mine safety-through appropriate combination of technology and management practice. Proc Earth Planet Sci 2009;1(1):13-9. https://doi.org/10.1016/j.proeps.2009.09.005.
  • [4] Mishra RK, Rinne M. Geotechnical risk classification for underground mines. Arch Min Sci 2015;60(1):51-61. https://doi.org/10.1515/amsc-2015-0004.
  • [5] Tripathy DP, Ala CK. Identification of safety hazards in Indian underground coal mines. J Sustain Min 2018;17(4):175-83. https://doi.org/10.1016/j.jsm.2018.07.005.
  • [6] Iannacchione AT, Tadolini SC. Occurrence, predication, and control of coal burst events in the U.S. Int J Min Sci Technol 2016;26(1):39-46. https://doi.org/10.1016/j.ijmst.2015.11.008.
  • [7] Chlebowski D, Burtan Z, Zorychta A. Evaluation of rockburst hazard under abandoned mine workings. Arch Min Sci 2018; 63(3):687-99. https://doi.org/10.24425/123691.
  • [8] Pytel W, Fuławka K, Pałac-Walko B, Mertuszka P, Kisiel J, Jalas P, et al. Universal approach for risk identification and evaluation in underground facilities. Min Sci 2020;27:165-81. https://doi.org/10.37190/msc202712.
  • [9] Saharan MR, Mitri H. Destress blasting as a mines safety tool: some fundamental challenges for successful applications. Procedia Eng 2011;26:37-47. https://doi.org/10.1016/j.proeng.2011.11.2137.
  • [10] Drzewiecki J. Zoning of foci of seismic tremors in division G-23, KGHM Polska Miedz SA. J Sustain Min 2017;16(2):31-7. https://doi.org/10.1016/j.jsm.2017.06.004.
  • [11] Wang F, Kaunda R. Assessment of rockburst hazard by quantifying the consequence with plastic strain work and released energy in numerical models. Int J Min Sci Technol 2019;29(1):93-7. https://doi.org/10.1016/j.ijmst.2018.11.023.
  • [12] Wen Z, Wang X, Tan Y, Zhang H, Huang W, Li Q. A Study of rockburst hazard evaluation method in coal mine. Shock Vib 2016:8740868. https://doi.org/10.1155/2016/8740868.
  • [13] Burtan Z. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogow Copper Belt Area (Poland). -3S Web Conf 2017;24:01004. https://doi.org/10.1051/-3sconf/20172401004.
  • [14] Drzewiecki J, Piernikarczyk A. The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event. J Sustain Min 2017; 16(1):1-7. https://doi.org/10.1016/j.jsm.2017.05.001.
  • [15] Vennes I, Mitri H, Chinnasane DR, Yao M. Large-scale destress blasting for seismicity control in hard rock mines: a case study. Int J Min Sci Technol 2020;30(2):141-9. https://doi.org/10.1016/j.ijmst.2020.01.005.
  • [16] Feng XT, Liu J, Chen B, Xiao Y, Feng G, Zhang F. Monitoring, warning, and control of rockburst in deep metal mines. Engineering 2017;3(4):538-45. https://doi.org/10.1016/J.ENG.2017.04.013.
  • [17] Askaripour M, Saeidi A, Rouleau A, Mercier-Langevin P. Rockburst in underground excavations: a review of mechanism, classification, and prediction methods. Undergr Space 2022. https://doi.org/10.1016/j.undsp.2021.11.008 (in press).
  • [18] Cai M. Prediction and prevention of rockburst in metal mines e a case study of Sanshandao gold mine. J Rock Mech Geotech Eng 2016;8(2):204-11. https://doi.org/10.1016/j.jrmge.2015.11.002.
  • [19] Stec K. Geomechanical conditions of causes of high-energy rock mass tremors determined based on the analysis of parameters of focal mechanisms. J Sustain Min 2015;14(1): 55-65. https://doi.org/10.1016/j.jsm.2015.08.008.
  • [20] Kabiesz J, Lurka A, Drzewiecki J. Selected methods of rock structure disintegration to control mining hazards. Arch Min Sci 2015;60(3):807-24. https://doi.org/10.1515/amsc-2015-0053.
  • [21] Simser BP. Rockburst management in Canadian hard rock mines. J Rock Mech Geotech Eng 2019;11(5):1036-43. https://doi.org/10.1016/j.jrmge.2019.07.005.
  • [22] Drover C, Villaescusa E. A comparison of seismic response to conventional and face destress blasting during deep tunnel development. J Rock Mech Geotech Eng 2019;11(5):965-78. https://doi.org/10.1016/j.jrmge.2019.07.002.
  • [23] Hashemi AS, Katsabanis P. Tunnel face preconditioning using destress blasting in deep underground excavations. Tunn Undergr Space Technol 2021;117:104126. https://doi.org/10.1016/j.tust.2021.104126.
  • [24] Wang Y, Wang S, Zhao Y, Guo P, Liu Y, Cao P. Blast induced crack propagation and damage accumulation in rock mass containing initial damage. Shock Vib 2018:3848620. https://doi.org/10.1155/2018/3848620.
  • [25] Baranowski P, Ł Mazurkiewicz, Małachowski J, Pytlik M. Experimental testing and numerical simulations of blast-induced fracture of dolomite rock. Meccanica 2020;55: 2337-52. https://doi.org/10.1007/s11012-020-01223-0.
  • [26] Cieslik J, Burtan Z, Chlebowski D, Zorychta A. Geomechanical analysis of location and conditions for mining-induced tremors in LGOM copper mines. J Sustain Min 2017; 16(3):94-103. https://doi.org/10.1016/j.jsm.2017.10.002.
  • [27] Mertuszka P, Pytel W, Szczerbinski K. Optimization of winning blasting parameters conducted for group of faces, aiming for elastic wave effect amplification. In: Proceedings of the 24th world mining congress. Brasil: Rio de Janeiro; 2016. p. 355-66.
  • [28] Fuławka K, Pytel W, Mertuszka P. The effect of selected rockburst prevention measures on seismic activity e case study from the Rudna copper mine. J Sustain Min 2018;17(1): 1-10. https://doi.org/10.1016/j.jsm.2018.03.001.
  • [29] Baranowski P, Damaziak K, Ł Mazurkiewicz, Mertuszka P, Pytel W, Małachowski J, et al. Destress blasting of rock mass: multiscale modelling and simulation. Shock Vib 2019: 2878969. https://doi.org/10.1155/2019/2878969.
  • [30] Gogolewska AB, Kowalczyk MM. Group winning blasting as a measure to mitigate seismic hazard in a deep copper ore mine, SW Poland. Min Sci 2020;27:155-64. https://doi.org/10.37190/msc202711.
  • [31] Ł Wojtecki, Konicek P. Estimation of active rockburst prevention effectiveness during longwall mining under disadvantageous geological and mining conditions. J Sustain Min 2016;15(1):1-7. https://doi.org/10.1016/j.jsm.2016.04.003.
  • [32] Mitri HS. Destress blasting e from theory to practice. In: Proceedings of the 4th world congress on mechanical, chemical and material engineering. Madrid, Spain; 2018. https://doi.org/10.11159/mmm-18.2.
  • [33] Zeng S, Wang S, Sun B, Liu Q. Propagation characteristics of blasting stress waves in layered and jointed rock caverns. Geotech Geol Eng 2018;36:1559-73. https://doi.org/10.1007/s10706-017-0410-x.
  • [34] Kumar R, Choudhury D, Bhargava K. Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. J Rock Mech Geotech Eng 2016; 8(3):341-9. https://doi.org/10.1016/j.jrmge.2015.10.009.
  • [35] Zhongya Z, Xiaoguang J. Prediction of peak velocity of blasting vibration based on artificial neural network optimized by dimensionality reduction of FA-MIV. Math Probl Eng 2018:8473547. https://doi.org/10.1155/2018/8473547.
  • [36] Oloffson SO. Applied explosives technology for construction and mining. Applex AB Arla; 2000.
  • [37] Verma HK, Thote NR. Investigation of delay time precision in pyrotechnic detonators. J Rock Mech Tunn Technol 2013; 19(1):19-28.
  • [38] Silva J, Li L, Gernand JM. Reliability analysis for mine blast performance based on delay type and firing time. Int J Min Sci Technol 2018;28(2):195-204. https://doi.org/10.1016/j.ijmst.2017.07.004
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a7c444a-361b-4f6e-bd46-db149259b191
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.