PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Load regulation application of university campus based on solar power generation forecasting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a solar photovoltaic power system on a university campus, the electricity generated by the system meets the campus load, and the extra electricity is delivered to the grid. Generally, the price of the photovoltaic system is cheaper than that of the utility power system. The full use of solar electricity can reduce the electricity cost of the school. The deep belief network is used to predict solar photovoltaic generation and electricity load, and the gap is found. According to the gap, the power loads on the campus are adjusted to improve the utilization rate of solar power generation. Through the practical application of Changqing Campus of Qilu University of Technology in China, it is found that the utilization rate of solar photovoltaic power generation effectively improved from 91.24% in 2017 to 98.16% in 2019, and the annual electricity is saved by 68 610 yuan (in 2019).
Rocznik
Strony
429--441
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
autor
  • School of Information and Automation Engineering Qilu University of Technology (Shandong Academy of Sciences) No. 3501, Daxue Road, Changqing District, Jinan 250353 Shandong Province, PR China
autor
  • School of Information and Automation Engineering Qilu University of Technology (Shandong Academy of Sciences) No. 3501, Daxue Road, Changqing District, Jinan 250353 Shandong Province, PR China
autor
  • School of Information and Automation Engineering Qilu University of Technology (Shandong Academy of Sciences) No. 3501, Daxue Road, Changqing District, Jinan 250353 Shandong Province, PR China
Bibliografia
  • [1] Zhao Xia, Sun Mingyi, Li Xinyi, Hu Xiaoyun, Joint power water tide for regional comprehensive energy services, Power Automation Equipment, vol. 40, no. 12, pp. 23–30 (2020), DOI: 10.16081/j.epae.202010013.
  • [2] Sun Hongbin, Pan Zhaoguang, Guo Qinglai, Research on Multi energy Flow Energy Management: Challenges and Prospects, Power System Automation, vol. 40, no. 15, pp. 1–8 (2016), DOI: 10.7500/AEPS20150701007.
  • [3] Zhang Guorong, Chen Xiaran, Overview of the Future Development of Energy Internet, Power Automation Equipment, vol. 37, no. 1, pp. 1–7 (2017), DOI: 10.16081/j.issn.1006-6047.2017.01.001.
  • [4] Bando S., Asano H., Sajima K. et al., Optimal configuration of energy supply system in a microgrid with steam supply from a municipal waste incinerator, Power Electronics and ECCE Asia, vol. ICPE&ECCE, 8th International Conference, IEEE, pp. 557–564 (2011).
  • [5] Gan Lin, Chen Yuwei, Liu Yuquan et al., Coordinative optimizationof multiple energy flows for microgrid with renewable energy resources and case study, Electric Power Automation Equipment, vol. 37, no. l6, pp. 275–281 (2017), DOI: 10.16081/j.issn.1006-6047.2017.06.036.
  • [6] Yang Y., Pei W., Qi Z., Optimal sizing of renewable energy and CHP hybrid energy microgrid system, Inovative Smart Grid Technologies (ISGT), IEEE PES, pp. 1–7 (2012).
  • [7] Liu B., Zhao S., Yu X., Zhang L., Wang Q., A novel deep learning approach for wind power forecasting based on WD-LSTM model, Energies, vol. 13, no. 18, p. 4964 (2020), DOI: 10.3390/en13184964.
  • [8] Tuan-Ho Le, A combined method for wind power generation forecasting, Archives of Electrical Engineering, vol. 70, no. 4, pp. 991–1009 (2021), DOI: 10.24425/aee.2021.138274.
  • [9] Min’an Tang, Shangmei Yang, Kaiyue Zhang, Qianqian Wang, Chenggang Liu, Xuewang Dong, Model predictive direct power control of energy storage quasi-Z-source grid-connected inverter, Archives of Electrical Engineering, vol. 71, no. 1, pp. 21–35 (2022), DOI: 10.24425/aee.2022.140195.
  • [10] Jongsung Lee, Byungik Chang, Can Aktas, Ravi Gorthala, Economic feasibility of campus-wide photovoltaic systems in New England, Renewable Energy, vol. 99, pp. 452–464 (2016), DOI: 10.1016/j.renene.2016.07.009.
  • [11] Elieser Tarigan, Simulation and Feasibility Studies of Rooftop PV System for University Campus Buildings in Surabaya, International Journal of Renewable Energy Research, Indonesia, vol. 8, no. 2 pp. 895–908 (2018), DOI: 10.20508/ijrer.v8i2.7547.g7377.
  • [12] Angelim J.H., Affonso C.M., Energy management on university campus with photovoltaic generation and BESS using simulated annealing, 2018 IEEE Texas Power and Energy Conference (TPEC) IEEE (2018).
  • [13] ASTM G173-03(2012), Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37 tilted surface (2020).
  • [14] Das U. K., Tey K. S., Seyedmahmoudian M., Mekhilef S., Idris Myi, Van Deventer W., Horan B., Stojcevski A., Forecasting of photovoltaic power generation and model optimization: A review, Renewable and Sustainable Energy Reviews, vol. 81 pp. 912–928 (2018), DOI: 10.1016/j.rser.2017.08.017.
  • [15] Cyril Voyant, Marc Muselli, Christophe Paoli, Marie Laure Nivet, Philippe Poggi, Haurant P., Predictability of PV power grid performance on insular sites without weather stations: use of artificial neural networks, 24th European Photovoltaic Solar Energy Conference, Hamburg: Germany, pp. 1–4 (2009), DOI: 10.48550/arXiv.1001.2097.
  • [16] Perpinan O., Lorenzo E., Castro M.A., On the calculation of energy produced by a PV grid-connected system, Photovoltaics, vol. 15, no. 3, pp. 265–274 (2006), DOI: 10.1002/pip.728.
  • [17] Hans Georg Beyer, Jethro Bethke, Anja Drews, Detlev Heinemann, Elke Lorenz, Gerd Heilscher, Stefan Bofinger, Identification of a general model for the MPP performance of PV-modules for the application in a procedure for the performance check of grid connected systems, 19th European Photovoltaic Solar Energy Conference, pp. 3073–3076 (2004).
  • [18] Notton G., Lazarov V., Stoyanov L., Optimal sizing of a grid-connected PV system for various PV module technologiesand inclinations, inverter efficiency characteristics and locations, Renewable Energy, vol. 35, no. 2, pp. 541–554 (2010), DOI: 10.1016/j.renene.2009.07.013.
  • [19] Xu Jing, Chen Zhenghong, Tang Jun, Li Fen, Preliminary study on the prediction of the generation capacity of building photovoltaic grid connected power generation system, Power system protection and control, vol. 40, no. 18, pp. 81–85 (2012).
  • [20] Wang Shaoyi, Li Yingzi, Wang Zefeng, Prediction Method of Power Generation of Solar PV Grid connected System, Journal of Beijing University of Civil Engineering and Architecture, vol. 29, no. 1, pp. 64–70 (2013).
  • [21] Wei L. M., Li K. K., Research on the output characteristics of photovoltaic arrays under partial shading conditions based on peak point approximate calculation method, Archives of Electrical Engineering, vol. 71, no. 2, pp. 409–424 (2022), DOI: 10.24425/aee.2022.140719.
  • [22] William van Deventer, Elmira Jamei, Gokul Sidarth Thirunavukkarasu, Mehdi Seyedmahmoudian, Tey Kok Soon, Ben Horan, Saad Mekhilef, Alex Stojcevski, Short-term PV power forecasting using hybrid GASVM technique, Renewable Energy, vol. 140, pp. 367–379 (2019), DOI: 10.1016/j.renene.2019.02.087.
  • [23] Seyedmahmoudian Mehdi, Jamei Elmira, Thirunavukkarasu Gokul Sidarth, Tey Kok Soon, Mortimer Michael, Ben Horan, Alex Stocjevski, Saad Mekhilef, Short-Term Forecasting of the Output Power of a Building-Integrated Photovoltaic System Using a Metaheuristic Approach, Energies, vol. 11, p. 1260 (2018), DOI: 10.3390/en11051260.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a7b58f2-2ca6-4cd3-b32c-5e4eb801a916
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.