PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the precipitation process of secondary phases after long-term ageing of the S304H steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
S304H steel is used in the construction of pressure components of boilers with supercritical operating parameters. The paper presents the results of research on the microstructure following ageing for 30,000 hours at 650 and 700°C. Microstructure examination was performed using scanning and transmission electron microscopy. The precipitates were identified using transmission electron microscopy. The paper analyses the precipitation process and its dynamics depending on the temperature and ageing time in detail. MX carbonitrides and the ε_Cu phase were proved to be the most stable phase, regardless of the test temperature. It was also showed that the M₂₃C₆ carbide precipitates in the tested steel and the intermetallic sigma phase (σ) may play a significant role in the loss of durability of the tested steel. This is related to their significant increase due to the influence of elevated temperature, and their coagulation and coalescence dynamics strongly depend on the ageing/operating temperature level. The qualitative and quantitative identification of the secondary phase precipitation processes described in the study is important in the analysis of the loss of durability of the tested steel under creep conditions.
Rocznik
Strony
art. no. e137520
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network – Institute for Ferrous Metallurgy, ul. K. Miarki 12-14, 44-100 Gliwice, Poland
  • Office of Technical Inspection, Regional Branch Office based in Wrocław, ul. Grabiszyńska 51, 53-503 Wrocław, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44 100 Gliwice, Poland
Bibliografia
  • [1] “Poland’s Energy Policy PEP2040”, [Online]. Available: https://www.gov.pl/web/klimat/polityka-energetyczna-polski, [Accessed: 1. Mar. 2021].
  • [2] M. Bartecka, P. Terlikowski, M. Kłos, and Ł. Michalski, “Sizing of prosumer hybrid renewable energy systems in Poland,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 721‒731, 2020, doi: 10.24425/bpasts.2020.133125.
  • [3] G. Golański, A. Zieliński, and A. Zielińska-Lipiec, “Degradation of microstructure and mechanical properties in martensitic cast steel after ageing,” Materialwiss. Werkst., vol. 46, no. 3, pp. 248–255, 2015, doi: 10.1002/mawe.201400325.
  • [4] J. Horváth, J. Janovec, and M. Junek, “The Changes in Mechanical Properties of Austenitic Creep Resistant Steels SUPER 304H and HR3C Caused by Medium-Term Isothermal Ageing,” Sol. St. Phen., vol. 258, pp. 639‒642, 2017, doi: 10.4028/www.scientific.net/ssp.258.639.
  • [5] Zieliński, Golański, for up to 30,000 h at 650–750°C,” Mat. Sci. Eng. A-Struct., vol. 796, p. 139944, 2020, doi: 10.1016/j.msea.2020.139944.
  • [6] G. Golański, A. Zieliński, M. Sroka, and J. Słania, “The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat-Resistant Austenitic Stainless Steel,” Materials, vol. 13, no. 6, p. 1297, 2020, doi: 10.3390%2Fma13061297.
  • [7] A.F. Padilha and P.R. Rios, “Decomposition of Austenite in Austenitic Stainless Steels,” ISIJ Intern., vol. 42, no. 4, pp. 325–327, 2002, doi: 10.2355/isijinternational.42.325.
  • [8] R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, and A.F. Padilha, “A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance,” Mater. Res., vol. 10, no. 4, pp. 453–460, 2007, doi: 10.1590/s1516-14392007000400021.
  • [9] X. Xie, Y. Wu, C. Chi, and M. Zhang, “Superalloys for Advanced Ultra-Super-Critical Fossil Power Plant Application,” Superalloys, 2015, doi: 10.5772/61139.
  • [10] A. Zieliński, G. Golański, M. Kierat, M. Sroka, A. Merda, and K. Sówka, “Microstructure of HR6W Alloy at Elevated Temperature after Prolonged Ageing in Air Atmosphere,” Acta Phys. Pol. A, vol. 138, no. 2, pp. 253–256, 2020, doi: 10.12693/aphyspola.138.253.
  • [11] M. Sroka, A. Zieliński, A. Śliwa, M. Nabiałek, Z. Kania-Pifczyk, and I. Vasková, “The Effect of Long-Term Ageing on the Degradation of the Microstructure the Inconel 740h Alloy,” Acta Phys. Pol. A, vol. 137, no. 3, pp. 355–360, 2020, doi: 10.12693/aphyspola.137.355.
  • [12] A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, no. 11, p. 2130, 2018, doi:10.3390/ma11112130.
  • [13] A. Zieliński, J. Dobrzański, H. Purzyńska, R. Sikora, M. Dziuba-Kałuża, and Z. Kania, “Evaluation of Creep Strength of Heterogeneous Welded Joint in HR6W Alloy and Sanicro 25 Steel,” Arch. Metall. Mater. vol. 62, no. 4, pp. 2057–2064, 2017, doi: 10.1515/amm-2017-0305.
  • [14] M. Sroka, A. Zieliński, A. Hernas, Z. Kania, R. Rozmus, T. Tański, and A. Śliwa, “The effect of long-term impact of elevated temperature on changes in the microstructure of inconel 740H alloy,” Metalurgija, vol. 56, no. 3‒4, pp. 333‒336, 2017.
  • [15] M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The Influence of the Temperature and Ageing Time on the NiCr23Co12Mo Alloy Microstructure,” Rev. Chim-Bucharest., vol. 68, no. 4, pp. 737–741, 2017, doi: 10.37358/rc.17.4.5541.
  • [16] T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 913‒921, doi: 10.24425/bpasts.2020.134184.
  • [17] A. Zieliński, M. Miczka, and M. Sroka, “The effect of temperature on the changes of precipitates in low-alloy steel,” Mater. Sci. Tech-Lond., vol. 32, no. 18, pp. 1899‒1910, 2016, doi: 10.1080/02670836.2016.1150242.
  • [18] T. Tokairin et al., “Investigation on long-term creep rupture properties and microstructure stability of Fe–Ni based alloy Ni–23Cr–7W at 700°C,” Mat. Sci. Eng. A-Struct., vol. 565, pp. 285–291, 2013, doi: 10.1016/j.msea.2012.12.019.
  • [19] G. Golański, C. Kolan, A. Zieliński, and P. Urbańczyk, Degradation process of heat–resistant austenitic stainless steel, Energetics, vol. 11, pp. 727‒730, 2017 [in polish].
  • [20] M. Igarashi, Alloy design philosophy of creep – resistant steels In: Abe F., Kern T.U., Viswanathan R. (ED.), Creep resistant steels. Cambridge: Woodhead Publishing, 2008.
  • [21] C. Chi, H. Yu, J. Dong, W. Liu, S. Cheng, Z. Liu, and X. Xie, “The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application,” Prog. Nat. Sci., vol. 22, no. 3, pp. 175–185, 2012., doi: 10.1016/j.pnsc.2012.05.002.
  • [22] H. Yu and Ch. Chi, “Precipitation behaviour of Cu-rich phase in 18Cr9Ni3CuNbN austenitic heat – resistant steel at early aging state”, Chin. J. Mater. Res., vol. 29, pp. 195‒200, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a79a192-3fe6-47bd-a8fc-2fab02483c9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.