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Abstract. This work concerns the oscillation and asymptotic properties of solutions to
the non-linear difference equation with advanced arguments

xn+1 − xn =
m∑

i=1

fi,n(xn+hi,n ).

We establish sufficient conditions for the existence of positive, and negative solutions. Then
we obtain conditions for solutions to be bounded, convergent to positive infinity and to
negative infinity and to zero. Also we obtain conditions for all solutions to be oscillatory.
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1. INTRODUCTION
In recent years there has been a lot of research concerning the oscillation of solutions
to difference and differential equations with advanced arguments. These equations
appear in mathematical models in which the present state depends on future states
[1, 4, 7, 19]. The strong interest in these equations arises from having applications such
as population dynamics where a difference equation with constant advanced arguments
can serve as a mathematical model that includes a k-th generation [3]. Nowadays there
exists an extensive literature on the oscillation theory of advanced type differential and
difference equations. See, for example, the references in this article, and the references
therein.

In this article we study the oscillation and asymptotic properties of solutions to
the advanced difference equation

xn+1 − xn =
m∑

i=1
fi,n(xn+hi,n), (1.1)

where {fi,n}∞n=1 are sequences of real-valued functions and {hi,n}∞n=1 are sequences of
positive integers.
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In Section 2, we present some conditions for the existence of positive, and of
negative solutions to a linear version of (1.1). In Section 3, by extending a result
in [5], we obtain conditions for all oscillations to be bounded, and to tend to zero. In
Section 4, we obtain conditions for every solution to be oscillatory. Also we compare
our conditions with those obtained in [13] for constant advances. Also we illustrate our
results with examples.

To study the oscillation of solutions, we assume that solutions exist and are defined
for all n large enough. Quite frequently solutions are obtained as fixed points of
contraction mappings, which is the case in Theorem 3.4 below. In general it is not
clear how to formulate initial-value problems for advanced difference and differential
equations. However, in special cases we can obtain a unique of solution. Consider the
difference equation

xn+1 − xn = fn(xn, xn+1, . . . , xn+m) , (1.2)

with m > 1. For each fixed set of values n, a1, . . . , am, we assume that the function
fn(a1, a2, . . . , am, ·) is one-to-one and onto from R to R. Then using the initial data
x1, x2, . . . , xm we solve for xm+1 in the equation x2 − x1 = f1(x1, x2, . . . , xm+1).
Then using the data x2, . . . , xm+1 we solve for xm+2 in the equation x3 − x2 =
f1(x2, x3, . . . , xm+2). Then solve for xm+3 in x4−x3 = f1(x3, x4, . . . , xm+3), etc. This
way we construct the solution by defining one entry at the time. This is known as the
method of steps.

2. EXISTENCE OF NON-OSCILLATORY SOLUTIONS

By a solution {xn} we mean a sequence of real numbers that satisfies (1.1) for all n
large enough.

A solution is said to be oscillatory if for every positive integer n0 there exist
n1, n2 ≥ n0 such that xn1xn2 ≤ 0. A non-oscillatory solution is either eventually
positive or eventually negative.

In this section we restrict our attention to the particular case of (1.1), when
fi,n(x) = ai,nx; thus we have the linear difference equation

xn+1 − xn =
m∑

i=1
ai,nxn+hi,n

. (2.1)

When p < n, we use the conventions
∏p

i=n xi = 1 and
∑p

i=n xi = 0.

Theorem 2.1. Assume that ai,n ≥ 0 and that there exists a sequence {un} of
non-negative terms satisfying

un+1 ≥ 1 +
m∑

i=1
ai,n

hi,n∏

j=1
un+j , n ≥ n0. (2.2)

Then (2.1) has positive solutions, and negative solutions.
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Proof. Let {un} be a solution of (2.2), and let v1,n := un. Then for n ≥ n0 and ` ≥ 0,
we define a double indexed sequence {v`,n} recursively by

v`+1,n+1 = 1 +
m∑

i=1
ai,n

hi,n∏

j=1
v`,n+j

Then, by (2.2),

0 ≤ v2,n+1 = 1 +
m∑

i=1
ai,n

hi,n∏

j=1
v1,n+j ≤ v1,n+1, n ≥ n0.

By induction, we can show that 0 ≤ · · · ≤ v`+1,n+1 ≤ v`,n+1 ≤ · · · ≤ v1,n+1. Then,
for each fixed n+ 1, the limit lim`→+∞ v`,n+1 =: vn+1 exists. This limit satisfies

vn+1 = 1 +
m∑

i=1
ai,n

hi,n∏

j=1
vn+j .

Then for any xn0 , the sequence

xn = xn0

n∏

i=n0

vi

is a solution of (2.1). When xn0 > 0 this is a positive solution and when xn0 < 0
this is a negative solution.

Now we consider the difference equation whose coefficients and advanced arguments
are smaller than those of (2.1),

yn+1 − yn =
m∑

i=1
bi,nyn+gi,n . (2.3)

Theorem 2.2. Assume the conditions of Theorem 2.1 hold, and that 1 ≤ gi,n ≤ hi,n,
0 ≤ bi,n ≤ ai,n for n ≥ 1. Then (2.3) has positive solutions and negative solutions.
Proof. Let {un} be a non-negative solution of (2.2). Then un ≥ 1 and

un+1 ≥ 1 +
m∑

i=1
ai,n

hi,n∏

j=1
un+j ≥ 1 +

m∑

i=1
bi,n

hi,n∏

j=1
un+j ≥ 1 +

m∑

i=1
bi,n

gi,n∏

j=1
un+j .

Using this inequality in Theorem 2.1, we have the existence of positive solutions and
negative solutions.

Corollary 2.3. Assume that the sequences {ai,n}n and {hi,n}n are bounded as follows:
0 ≤ ai,n ≤ ai and 1 ≤ hi,n ≤ hi for 1 ≤ i ≤ m and n ≥ n0. Also assume that
the inequality

λ ≥ 1 +
m∑

i=1
aiλ

hi (2.4)

has a non-negative solution λ. Then (2.1) has positive solutions and negative solutions.
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Proof. We consider the equation with constant coefficients and constant advances

yn+1 − yn =
m∑

i=1
aiyn+hi . (2.5)

Note that using (2.4), we can show that the constant sequence un = λ satisfies (2.2)
with ai,n = ai. Then by Theorem 2.1, we have positive solutions and negative solutions
to (2.5). Since ai,n ≤ ai and hi,n ≤ hi, by applying Theorem 2.2, we have positive
solutions and negative solutions to (2.1).

Now we consider an equation with positive and negative coefficients,

xn+1 − xn =
m∑

i=1

(
ai,nxn+hi,n

− bi,nxn+gi,n

)
. (2.6)

Theorem 2.4. Suppose that 0 ≤ bi,n ≤ ai,n, and 1 ≤ gi,n ≤ hi,n for 1 ≤ i ≤ m and
n ≥ n0. If inequality (2.2) has a nonnegative solution, then (2.6) has positive solutions
and negative solutions.

Proof. Let {un} be a nonnegative solution of (2.2) and let v1,n = un. We define the
double indexed sequence {v`,n} recursively by

v`+1,n+1 = 1 +
m∑

i=1

(
ai,n

hi,n∏

j=1
v`,n+j − bi,n

gi,n∏

j=1
v`,n+j

)
, for n ≥ n0, ` ≥ 1.

By (2.2), we have

v1,n+1 ≥ 1 +
m∑

i=1
ai,n

hi,n∏

j=1
v1,n+j

≥ 1 +
m∑

i=1

(
ai,n

hi,n∏

j=1
v1,n+j − bi,n

gi,n∏

j=1
v1,n+j

)
= v2,n+1.

Since 0 ≤ bi,n ≤ ai,n and 1 ≤ gi,n ≤ hi,n and 1 ≤ v1,n, it follows that 1 ≤ v2,n.
Next, we use induction: Assuming that 1 ≤ v`−1,n, from 0 ≤ bi,n ≤ ai,n it follows

that 1 ≤ v`,n. Now assuming that v`,n ≤ v`−1,n, we wish to show that v`+1,n ≤ v`,n

which by definition has the form

1 +
m∑

i=1

(
ai,n

hi,n∏

j=1
v`,n+j − bi,n

gi,n∏

j=1
v`,n+j

)

≤ 1 +
m∑

i=1

(
ai,n

hi,n∏

j=1
v`−1,n+j − bi,n

gi,n∏

j=1
v`−1,n+j

)
.
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The above inequality is equivalent to

m∑

i=1

[ gi,n∏

j=1
v`,n+j

(
ai,n

hi,n∏

j=gi,n+1
v`,n+j − bi,n

)]

≤
m∑

i=1

[ gi,n∏

j=1
v`−1,n+j

(
ai,n

hi,n∏

j=gi,n+1
v`−1,n+j − bi,n

)]
.

This inequality follows from the assumptions 1 ≤ v`,n ≤ v`−1,n and 0 ≤ bi,n ≤ ai,n.
Therefore, 1 ≤ v`+1,n ≤ v`,n. Consequently, for each fixed n the limit lim`→∞ v`,n := vn

exists and is non-negative. The sequence defined with these limits satisfies

0 ≤ vn+1 = 1 +
m∑

i=1

(
ai,n

hi,n∏

j=1
vj+n − bi,n

gi,n∏

j=1
vj+n

)
, n ≥ n0.

Then for any xn0 , the sequence

xn = xn0

n∏

i=n0

vi

is a solution of (2.1). When xn0 > 0 this is a positive solution and when xn0 < 0
this is a negative solution.

3. ASYMPTOTIC BEHAVIOR

In this section we study the behavior of solutions to (1.1), as n → ∞. Some of our
results are analog to those in [15] for continuous variables. Our first result uses the
assumption

(H1) There exists constants ai,n ≥ 0 such that for i = 1, . . . ,m and n ≥ 1:

fi,n(x)
{
≥ ai,nx if x ≥ 0,
≤ ai,nx if x < 0.

An example of function satisfying the above condition is fi,n(x) = x(2 + sin(x)), with
ai,n = 1.

Theorem 3.1. Let {xn} be a solution of (1.1). Assume (H1) and

+∞∑

i=n0

m∑

j=1
aj,i = +∞. (3.1)

If {xn} is eventually positive then limn→∞ xn = +∞. If {xn} is eventually negative
then limn→∞ xn = −∞.
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Proof. Let xn > 0 for n ≥ n0, then by (1.1) and (H1), {xn} is non-decreasing and

xn+1 − xn ≥
m∑

i=1
ai,nxn+hi,n

≥ xn0

m∑

i=1
ai,n.

Summing both sides of this inequality from n0 to n, we obtain

xn+1 ≥ xn0

(
1 +

n∑

i=n0

m∑

j=1
ai,j

)
.

When n→∞, by (3.1), we obtain limn→+∞ xn = +∞. The negative case has a similar
proof.

For the next result we use the assumption
(H2) There exists constants ai,n ≤ 0 such that for i = 1, . . . ,m and n ≥ 1:

fi,n(x)
{
≤ ai,nx if x ≥ 0,
≥ ai,nx if x < 0.

Theorem 3.2. Let {xn} be a solution of (1.1). Assume (H2) and
+∞∑

i=n0

m∑

j=1
aj,i = −∞. (3.2)

If {xn} is non-oscillatory then limn→∞ xn = 0.
Proof. Assume that {xn} is a positive solution of (1.1). Then by (1.1) and (H2), {xn}
is non-increasing. So, {xn} has a nonnegative limit, α = limn→+∞ xn. If α > 0, then
by (H2),

xn+1 − xn ≤
m∑

i=1
ai,nxn+hi,n

≤ α
m∑

i=1
ai,n.

Summing both sides of this inequality from n0 to n and using (3.2), we get limn→∞ xn

= −∞. This contradicts {xn} begin eventually positive; therefore α = 0. The eventually
negative case has a similar proof.

We use the forward difference operator ∆xn = xn+1 − xn in the following lemma.
In the proof of the lemma we essentially follow the lines of a method for solving
a difference equation, an area of considerable recent interest (see, for example [16–18]
and the references therein, where closely related methods were used).
Lemma 3.3. Assume that

An :=
m∑

i=1
ai,n 6= −1.

Then a sequence {xn} is a solution of (2.1) if and only if it is a solution of

xn = xn0

n−1∏

i=n0

(1 +Ai) +
n−1∑

`=n0

( m∑

i=1
ai,`

`+hi,`−1∑

j=`

∆xj

) n−1∏

i=`+1
(1 +Ai). (3.3)
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Proof. Using the telescoping property xp − xn =
∑p−1

i=n ∆xi, and (2.1), we have that
{xn} is a solution of (2.1) if and only if

∆xn =
m∑

i=1
ai,nxn+hi,n =

m∑

i=1
ai,n

(
xn +

n+hi,n−1∑

j=n

∆xj

)
.

Hence,

∆xn − xnAn =
m∑

i=1
ai,n

n+hi,n−1∑

j=n

∆xj .

Multiplying by
∏n

i=n0
(1 +Ai)−1 both sides of the last equality, we obtain

∆
(
xn

n−1∏

i=n0

(1 +Ai)−1
)

=
( m∑

i=1
ai,n

n+hi,n−1∑

j=n

∆xj

) n∏

i=n0

(1 +Ai)−1.

Changing the variable n by ` and summing both sides form ` = n0 to ` = n − 1,
we have

xn

n−1∏

i=n0

(1 +Ai)−1 − xn0 =
n−1∑

`=n0

( m∑

i=1
ai,`

`+hi,`−1∑

j=`

∆xj

) ∏̀

i=n0

(1 +Ai)−1.

Multiplying it by
∏n−1

i=n0
(1+Ai), we obtain (3.3). Now starting from (3.3) and retracing

the steps above we obtain equation (2.1). This completes the proof.

Theorem 3.4. Assume the conditions of Lemma 3.3 are satisfied and that there are
constants α and n0 such that

n−1∑

`=n0

( m∑

i=1
|ai,`|

`+hi,`−1∑

j=`

m∑

k=1
|ak,j |

) n−1∏

i=`+1
|1 +Ai| ≤ α < 1 for n ≥ n0. (3.4)

Also assume that
n−1∏

i=n0

|1 +Ai| remains bounded as n→∞. (3.5)

Then for each initial value xn0 , there is a unique solution to (2.1); furthermore, this
solution is bounded.

Proof. Let B be the collection of bounded sequences that have a common value at
n = n0. Then B is closed subset of a complete metric space under the supremum norm.
Based on Lemma 3.3, we define the operator T : B → B by

Txn = xn0

n−1∏

i=n0

(1 +Ai) +
n−1∑

`=n0

( m∑

i=1
ai,`

`+hi,`−1∑

j=`

∆xj

) n−1∏

i=`+1
(1 +Ai). (3.6)
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Note that when n = n0, there are no terms in the product and no terms in the
summation; therefore Txn0 = xn0 . To estimate Txn, we note that by (2.1),

|∆xj | ≤
m∑

k=1
|ak,j | |xj+hk,j

| ≤ sup
j≤p
|xp|

m∑

k=1
|ak,j |. (3.7)

Then by (3.6), we have

|Txn| ≤ |xn0 |
n−1∏

i=n0

|1 +Ai|+ sup
n0≤p

|xp|
n−1∑

`=n0

( m∑

i=1
|ai,`|

`+hi,`−1∑

j=`

m∑

i=k

|ak,j |
) n−1∏

i=`+1
|1 +Ai|.

(3.8)
Since {xn} is bounded, by (3.4) and (3.5), the sequence {Txn} is also bounded. Now
we show that T is a contraction. Let {xn} and {yn} be sequences in B. The same
process as for (3.8) yields

|Txn − Tyn| ≤ sup
p≥n0

|xp − yp|
n−1∑

`=n0

( m∑

i=1
|ai,`|

`+hi,`−1∑

j=`

m∑

i=k

|ak,j |
) n−1∏

i=`+1
|1 +Ai|.

Using the norm ‖x‖ = supn≥n0 |xn| and condition (3.4), we have

‖Tx− Ty‖ ≤ α‖x− y‖.

Therefore T is a contraction on B and has a unique fixed point, which by Lemma 3.3
is the unique solution of (2.1) with the given initial value xn0 .

Note that under the assumptions of Theorem 3.4, all solutions must be bounded.
For any solution we use its value xn0 as the initial value in Theorem 3.4.

Now we provide an example where the assumptions of Theorem 3.4 are satisfied.
Example 3.5. Let m = 5, fi,n(x) = ai,nx with ai,n = (−1)i+n/(i+ n)2. Note that

|An| = |
5∑

i=1
ai,n| ≤

5∑

i=1
|ai,n| ≤

5
(n+ 1)2 (3.9)

which satisfies the assumption in Lemma 3.3. Then
n−1∏

i=n0

|1 +Ai| ≤
n−1∏

i=n0

(
1 + 5

(i+ 1)2

)
=: p.

To estimate p we use that ln(1 + x) ≤ x for x > −1.

ln(p) =
n−1∑

i=n0

ln
(

1 + 5
(i+ 1)2

)
≤

n−1∑

i=n0

5
(i+ 1)2

≤
n∫

n0

5
x2 dx ≤ 5

(
1
n0
− 1
n

)
≤ 5
n0
.
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Therefore,
n−1∏

i=n0

|1 +Ai| ≤ exp
(

5
n0

)
, (3.10)

which indicates that (3.5) is satisfied. Using (3.9) and that hi,n ≤ 4, we have

5∑

i=1
|ai,`|

`+hi,`−1∑

j=`

m∑

k=1
|ak,j | ≤

4(5)2

(`+ 1)4 .

By (3.10),

n−1∑

`=n0

4(5)2

(`+ 1)4 exp
(

5
`

)
≤ 4(5)2

5 exp
(

5
n0

) n−1∑

`=n0

1
(`+ 1)4 ≤

4(5)2

5 exp
(

5
n0

)
1

3n3
0
.

In the above inequality we used integration from n0 to n, as for (3.10). Finally for
n0 = 5 the above expression is less than 1, and (3.4) is satisfied. Then by Theorem 3.4,
for each initial value xn0 , there is a unique solution.

4. OSCILLATION OF ALL SOLUTIONS TO (1.1)

Li [13] used elaborate estimates to obtain the oscillation of solutions to

xn − xn−1 =
m∑

i=1
ai,nxn+hi

.

Here, we use simple estimates to obtain conditions for the oscillation of all solutions
to (1.1). Then we compare our conditions with those in [13].

First we extend a result in [5] from an equation with single and constant advance
to multiple and variable advances.

Theorem 4.1. Assume (H1) and

2 ≤ min
1≤i≤m

inf
1≤n

hi,n =: h0 , (4.1)

lim inf
n→∞

m∑

i=1
ai,n >

1
h0

(
1− 1

h0

)h0−1
. (4.2)

Then every solution of (1.1) is oscillatory.

Proof. We assume that there is an eventually positive solution {xn} of (1.1) and
obtain a contradiction. The proof for eventually negative solutions is similar and is
omitted. Let xn > 0 for all n ≥ n0. From (H1) we have

xn+1 − xn ≥
m∑

i=1
ai,nxn+hi,n . (4.3)
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By (H1), {xn} is a non-decreasing sequence; thus xn+h0 ≤ xn+hi,n
. Let rn = xn/xn+1.

Then 0 < rn ≤ 1 for all n ≥ n0. From (4.3) we have

1− rn ≥
m∑

i=1
ai,n

1
rn+1rn+2 · · · rn−1+h0

, for n ≥ n0.

Let c be the average between the two sides of inequality (4.2). Then

1− rn > c
1

rn+1rn+2 · · · rn−1+h0

.

Let γ = supn≥n0 rn. Then 0 < γ ≤ 1, and taking the infimum over n, in both sides,
we have 1− γ ≥ c/γh0−1, which implies

(1− γ)γh0−1 ≥ c.

The left-hand side attains its maximum when γ = (h0 − 1)/h0. Therefore

1
h0

(
1− 1

h0

)h0−1
≥ (1− γ)γh0−1 ≥ c > 1

h0

(
1− 1

h0

)h0−1
.

this contradiction competes the proof.

Theorem 4.2. Assume (H1), (4.1), and

lim sup
n→∞

m∑

i=1
ai,n > 1. (4.4)

Then every solution of (1.1) is oscillatory.

Proof. We assume that there is an eventually positive solution {xn} of (1.1) and obtain
a contradiction. The proof for eventually negative solutions is similar and is omitted.
As in the proof of Theorem 4.1, we divide (4.1) by xn+1 and let rn = xn/xn+1. Since
0 < rn ≤ 1 we have

1 > 1− rn ≥
m∑

i=1
ai,n

1
rn+1rn+2 · · · rn−1+h0

≥
m∑

i=1
ai,n for n ≥ n0.

This contradicts (4.4) and completes the proof.

We remark that condition (7) in [13] and condition (4.4) here are independent of
each other. Our values ai,n and hi,n correspond to pi(n) and ki respectively in [13].
Let fi,n(x) = ai,nx, m = 1, hi,n = 2 and

pi(n) = ai,n =
{

3/2 if n is a multiple of 3,
0 otherwise.
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When pi(n) = 0, the summand in (7) is zero. When pi(n) 6= 0, the terms q1, q2, . . .
are zero in (7); thus the summands in (7) are zero. In both cases (7) is not satisfied
while (4.4) is satisfied.
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