PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Development of pedotransfer functions for predicting soil bulk density : a case study in Indonesian small island

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unlike many other countries, tropical regions such as Indonesia still lack publications on pedotransfer functions (PTFs), particularly ones dedicated to the predicting of soil bulk density. Soil bulk density affects soil density, porosity, water holding capacity, drainage, and the stock and flux of nutrients in the soil. However, obtaining access to a laboratory is difficult, time-consuming, and costly. Therefore, it is necessary to utilise PTFs to estimate soil bulk density. This study aims to define soil properties related to soil bulk density, develop new PTFs using multiple linear regression (MLR), and evaluate the performance and accuracy of PTFs (new and existing). Seven existing PTFs were applied in this study. For the purposes of evaluation, Pearson’s correlation (r), mean error (ME), root mean square error (RMSE), and modelling efficiency (EF) were used. The study was conducted in five soil types on Bintan Island, Indonesia. Soil depth and organic carbon (SOC) are soil properties potentially relevant for soil bulk density prediction. The ME, RMSE, and EF values were lower for the newly developed PTFs than for existing PTFs. In summary, we concluded that the newly developed PTFs have higher accuracy than existing PTFs derived from literature. The prediction of soil bulk density will be more accurate if PTFs are applied directly in the area that is to be studied.
Wydawca
Rocznik
Tom
Strony
181--187
Opis fizyczny
Bibliogr. 29 poz., mapy, rys., tab., wykr.
Twórcy
  • Research Center for Geotechnology, Indonesian National Research and Innovation Agency, Bandung, Indonesia
autor
  • Research Center for Geotechnology, Indonesian National Research and Innovation Agency, Bandung, Indonesia
  • Research Center for Geotechnology, Indonesian National Research and Innovation Agency, Bandung, Indonesia
autor
  • Research Center for Geotechnology, Indonesian National Research and Innovation Agency, Bandung, Indonesia
  • Maritim Raja Ali Haji University, Tanjung Pinang, Indonesia
  • Research Center for Oceanography, Indonesian National Research and Innovation Agency, Jakarta, Indonesia
Bibliografia
  • BERNOUX M., CERRI C., ARROUAYS D., JOLIVET C., VOLKOFF B. 1998. Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Science Society of America Journal. Vol. 62(3) p. 743–749. DOI 10.2136/sssaj1998.03615995006200030029x.
  • BRAHIM N., BERNOUX M., GALLALI T. 2012. Pedotransfer functions to estimate soil bulk density for Northern Africa: Tunisia case. Journal of Arid Environments. Vol. 81 p. 77–83. DOI 10.1016/j.jaridenv.2012.01.012.
  • CHAUDHARI P.R., AHIRE D.V., AHIRE V.D., CHKRAVARTY M., MAITY S. 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific and Research Publications. Vol. 3(2) p. 1–8.
  • GEE G.W., BAUDER J.W. 1986. Particle-size analysis. In: Methods of soil analysis. P. 1. Physical and mineralogical methods. Ed. A. Klute. Madison, Wis. ASA, SSSA p. 383–411.
  • GROSSMAN R.B., REINSCH T.G. 2002. Bulk density and linear extensibility. In: Methods of soil analysis: P. 4. Physical methods. Eds. J.H. Dane, C.G. Topp. Madison, Wis. SSSA, p. 201–228.
  • HEUSCHER S.A., BRANDT C.C., JARDINE P.M. 2005. Using soil physical and chemical properties to estimate bulk density. Soil Science Society of America Journal. Vol. 69(1) p. 51–56. DOI 10.2136/sssaj2005.0051a.
  • HOLLIS J.M, HANNAM J., BELLAMY P.H. 2012. Empirically-derived pedotransfer functions for predicting bulk density in European soils. European Journal of Soil Science. Vol. 63(1) p. 96–109. DOI 10.1111/j.1365-2389.2011.01412.x.
  • JONES C.A. 1983. Effect of soil texture on critical bulk densities for root growth. Soil Science Society of America Journal. Vol. 47(6) p. 1208–1211. DOI 10.2136/sssaj1983.03615995004700060029x.
  • KUSNAMA , SUTISNA , AMIN , KOESOEMADINATA, SUKARDI , HERMANTO. 1994. Geological map of Tanjungpinang sheet, Sumatera. Geological Agency.
  • LEIFELD J., KÖGEL-KNABNER I. 2005. Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma. Vol. 124(1–2) p. 143–155. DOI 10.1016/j.geoder-ma.2004.04.009.
  • LI Y., CHEN D., WHITE R.E., ZHU A., ZHANG J. 2007. Estimating soil hydraulic properties of Fengqiu County soils in the North China Plain using pedo-transfer functions. Geoderma. Vol. 138(3–4) p. 261–271. DOI 10.1016/j.geoderma.2006.11.018.
  • MANRIQUE L.A., JONES C.A. 1991. Bulk density of soils in relation to soil physical and chemical properties. Soil Science Society of America Journal. Vol. 55(2) p. 476–481. DOI 10.2136/sssaj1991.03615995005500020030x.
  • MARTIN M.P., WATTENBACH M., SMITH P., MEERSMANS J., JOLIVET C., BOULONNE L., ARROUAYS D. 2011. Spatial distribution of soil organic carbon stocks in France. Biogeosciences. Vol. 8(5) p. 1053–1065. DOI 10.5194/bg-8-1053-2011.
  • MCBRATNEY A.B., MINASNY B., CATTLE S.R., VERVOORT R.W. 2002. From pedotransfer functions to soil inference systems. Geoderma. Vol. 109(1) p. 41–73. DOI 10.1016/S0016-7061(02)00139-8.
  • MCNEILL S.J., LILBURNE L.R., CARRICK S., WEBB T.H., CUTHILL T. 2018. Pedotransfer functions for the soil water characteristics of New Zealand soils using S-map information. Geoderma. Vol. 326 p. 96–110. DOI 10.1016/j.geoderma.2018.04.011.
  • MINASNY B., HARTEMINK A.E. 2011. Predicting soil properties in the tropics. Earth Science Reviews. Vol. 106(1) p. 52–62. DOI 10.1016/j.earscirev.2011.01.005.
  • PATIL N., SINGH S. 2016. Pedotransfer functions for estimating soil hydraulic properties: A review. Pedosphere. Vol. 26(4) p. 417–430. DOI 10.1016/S1002-0160(15)60054-6.
  • QIAO J., ZHU Y., JIA X., HUANG L., SHAO M. 2019. Development of pedotransfer functions for predicting the bulk density in the critical zone on the Loess Plateau, China. Journal of Soils and Sediments. Vol. 19(1) p. 366–372. DOI 10.1007/s11368-018-2040-1.
  • RUSTANTO A., BOOIJ M.J., WÖSTEN H., HOEKSTRA A.Y. 2017. Application and recalibration of soil water retention pedotransfer functions in a tropical upstream catchment: Case study in Bengawan Solo, Indonesia. Journal of Hydrology and Hydromechanics. Vol. 65(3) p. 307–320. DOI 10.1515/johh-2017-0020.
  • SAKIN E., DELIBORAN A., TUTAR E. 2011. Bulk density of Harran plain soils in relation to other soil properties. African Journal of Agricultural Research. Vol. 6(7) p. 1750–1757. DOI 10.5897/ AJAR10.502.
  • SOUZA E. DE, FERNANDES FILHO E.I., SCHAEFER C.E.G.R., BATJES N.H., SANTOS G.R. DOS , PONTES L.M. 2016. Pedotransfer functions to estimate bulk density from soil properties and environmental covariates: Rio Doce basin. Scientia Agricola. Vol. 73(6) p. 525–534. DOI 10.1590/0103-9016-2015-0485.
  • TOMASELLA J., HODNETT M.G. 1998. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Science. Vol. 163(3) p. 190–202.
  • TRANTER G., MINASNY B., MCBRATNEY A.B., MURPHY B., MCKENZIE N.J. GRUNDY M., BROUGH D. 2007. Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use and Management. Vol. 23(4) p. 437–443. DOI 10.1111/j.1475-2743.2007.00092.x.
  • USDA 2014. Keys to soil taxonomy. Soil Conservation Service. Vol. 12. Washington. United States Department of Agriculture. ISBN 978-0359573240. pp. 372.
  • VEREECKEN H., WEYNANTS M., JAVAUX M., PACHEPSKY Y., SCHAAP M.G., GENUCHTEN M.T. 2010. Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone Journal. Vol. 9(4) p. 795–820. DOI 10.2136/vzj2010.0045.
  • WALKLEY A., BLACK I.A. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. Soil Science. Vol. 79(1) p. 459–465.
  • WALL A., HEISKANEN J. 2003. Water-retention characteristics and related physical properties of soil on afforested agricultural land in Finland. Forest Ecology and Management. Vol. 186(1–3) p. 21–32. DOI 10.1016/S0378-1127(03)00239-1.
  • WEYNANTS M., VEREECKEN H., JAVAUX M. 2009. Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal. Vol. 8(1) p. 86–95. DOI 10.2136/vzj2008.0062.
  • XIANGSHENG Y.I., GUOSHENG L.I., YANYU Y.I.N. 2016. Pedotransfer functions for estimating soil bulk density: A case study in the Three-River Headwater region of Qinghai Province, China. Pedosphere. Vol. 26 (3) p. 362–373. DOI 10.1016/S1002-0160(15)60049-2
Uwagi
1. W oryginale imię autora Djuwansah: Muhamad zamiast Muhammad.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a6f9661-95a1-46ac-b22a-0b2436622ed5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.