PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

DOC and POC in the southern Baltic Sea. Part II – Evaluation of factors affecting organic matter concentrations using multivariate statistical methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is a continuation of the research on organic matter sources, distribution and dynamics in the southern Baltic Sea described in detail by Maciejewska and Pempkowiak (2014). In this paper, cluster analysis, principal component analysis and segment analysis were used to assess relations among factors influencing organic matter concentration in the Baltic sea-water. The following sea-water properties, salinity (Sal), temperature (Temp), pH, concentrations of chlorophyll a (Chla) and phaeopigment a (Feo), were assessed, while dissolved (DOC) and particulate (POC) organic carbon were used as organic matter measures. Water samples were collected in the course of a three-year study (2009–2011) from the Gdańsk Deep, the Gotland Deep and the Bornholm Deep (Southern Baltic). As a result, relations among both DOC and POC and the measured water properties were revealed. The cluster analysis leads to the discovery of the following structure of the analyzed water properties: DOC-pH, POC-Chla, without providing interpretation why the structure exists. Using the principal component analysis, factors influencing DOC and POC concentrations were classified as plankton activity and the inflows of saline and freshwater water masses as the study area. Segment regression analysis revealed that organic matter consists of labile and stable fractions and led to the quantification of relations between DOC and the measured sea-water properties. The following contributions to the DOC fluctuations were calculated: salinity – 11%, chlorophyll a – 26%, phaeopigment a – 26%, POC – 38% in the growing season and 31%, 33%, 21% and 22% respectively in the non-growing season.
Czasopismo
Rocznik
Strony
168--176
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Marine Chemistry and Biochemistry Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Marine Chemistry and Biochemistry Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • Almroth-Rosell, E., Eilola, K., Hordoir, R., Meier, M.H.E., Hall, P.O.J., 2011. Transport of fresh and resuspended particulate organic material in the Baltic Sea –— a model study. J. Mar. Syst. 87 (1), 1—12.
  • Bock, H.H., 1996. Probabilistic models in cluster analysis. Comput. Statist. Data Anal. 23, 5—28.
  • Borgognone, M.G., Bussi, J., Hough, G., 2001. Principal component analysis in sensory analysis: covariance or correlation matrix? Food Qual. Preference 12 (5—7), 323—326.
  • Brodeur, R.D., Ware, D.M., 1992. Long-term variability in zooplankton biomass in the subarctic Pacific Ocean. Fish. Oceanogr. 1 (1), 32—38.
  • Burska, D., Pryputniewicz, D., Falkowska, L., 2005. Stratification of particulate organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea). Oceanologia 47, 201—217.
  • Chen, W., Wagnersky, P.J., 1993. High-temperature combustion analysis of dissolved organic carbon produced in phytoplankton cultures. Mar. Chem. 41 (1—3), 167—171.
  • Chester, R., 2003. Marine Geochemistry, 2nd ed. Blackwell Science, London, 506.
  • Collos, Y., Husseini-Ratrema, J., Bec, B., Vaquer, A., Hoai, T.L., Rougier, C., Pons, V., Souchu, P., 2005a. Phaeopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon. Hydrobiologia 550, 83—93.
  • Collos, Y., Husseini-Ratrema, J., Bec, B., Vaquer, A., Hoai, T.L., Rougier, C., Pons, V., Souchu, P., 2005b. Pheopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon. Hydrobiologia 550, 83—93.
  • Dera, J., 1992. Marine Physics. Elsevier, Amsterdam, 515.
  • Dzierzbicka-Glowacka, L., Kulinski, K., Maciejewska, A., Jakacki, J., Pempkowiak, J., 2011. Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature. Oceanologia 53 (4), 971— 992.
  • Dzierzbicka-Glowacka, L., Kuliński, K., Maciejewska, A., Pempkowiak, J., 2010. Particulate Organic Carbon in the southern Baltic Sea: numerical simulations and experimental data. Oceanologia 52 (4), 621—648.
  • Edman, M., Omstedt, A., 2013. Modeling the dissolved CO2 system in the redox environment of the Baltic Sea. Limnol. Oceanogr. 58 (1), 74—92, http://dx.doi.org/10.4319/lo.2013.58.1.0074.
  • Emelyanov, E., 1995. Baltic Sea: Geology, Geochemistry, Paleoceanography, Pollution. P.P. Shishov Institute of Oceanology Russian Academy of Sciences, Kaliningrad, 119.
  • Emerson, S.R., Hedges, J.I., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, 453.
  • Ferrari, G.M., Dowell, M.D., Grossi, S., Targa, C., 1996. Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region. Mar. Chem. 55, 299—316.
  • Grzybowski, W., 2003. Are data on light-induced ammonium release from dissolved organic matter consistent? Chemosphere 52, 933— 936.
  • Grzybowski, W., Pempkowiak, J., 2003. Preliminary results on low molecular weight organic substances dissolved in the waters of the Gulf of Gdansk. Oceanologia 45 (4), 693—704.
  • Hedges, J.I., 2002. Why dissolved organic matter. In: Hansell, D.A., Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Elsevier Science, San Diego, 1—33.
  • HELCOM, 2007. Climate change in the Baltic Sea Area. Baltic Sea Environ. Proc. 111, 54.
  • Hoikkala, L., Lahtinen, T., Perttila, M., Lignell, R., 2012. Seasonal dynamics of dissolved organic matter on a costal salinity gradient in the northern Baltic Sea. Cont. Shelf Res. 45, 1—45.
  • Hygum, B.H., Petersen, J.W., Søndergaard, M., 1997. Dissolved organic carbon released by zooplankton grazing activity — a high quality substrate pool for bacteria. J. Plankton Res. 19 (1), 97— 111.
  • IPCC, 2007. Climate Change 2007. Synthesis Report. A Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge, 73.
  • Jurkovskis, A.K., Formych, T.A., Grotanie, B.J., 1976. Cikl izmienienij fosfora, azota i organiczeski swiazannogo uglieroda w Baltijskom Morie. Okieanologia 16, 79—86.
  • Kuliński, K., Maciejewska, A., Dzierzbicka-Głowacka, L., Pempkowiak, J., 2011. Parameterisation of a zero-dimensional pelagic detritus model, Gdansk Deep, Baltic Sea. Rocznik Ochrony Środowiska 13, 187—206.
  • Kuliński, K., Pempkowiak, J., 2008. Dissolved organic carbon in the southern Baltic Sea: quantification of factors affecting its distribution. Estuarine. Coast. Shelf Sci. 78, 38—44.
  • Kuliński, K., Pempkowiak, J., 2011. The carbon budget of the Baltic Sea. Biogeosciences 8, 3219—3230, http://dx.doi.org/10.5194/ bg-8-3219-2011.
  • Kuliński, K., Pempkowiak, J., 2012. Carbon Cycling in the Baltic Sea. Springer, Berlin, 132.
  • Lampert, W., Sommer, U., 2001. Ekologia wód śródlądowych. (Ecology in Freshwaters).Wydawnictwo Naukowe PWN, Warszawa, 415.
  • Leipe, T., Dippner, J.W., Hilles, S., Voss, M., Christiansen, C., Bartholdy, J., 2008. Environmental changes in the central Baltic Sea during the past 1000 years: inferences from sedimentary records, hydrography and climate. Oceanologia 50 (1), 23—41.
  • Maciejewska, A., Pempkowiak, J., 2014. DOC and POC in the Southern Baltic. Part I Evaluation of factors influencing sources distribution and dynamics of organic matter. Oceanologia 56 (3), 523—548.
  • Meyer-Harms, B., von Bodungen, B., 1997. Taxon-specific ingestion rates of natural phytoplankton by calanoid copepods in an estuarine environment (Pomeranian Bight, Baltic Sea) determined by cell counts and HPLC analyses of marker pigments. Mar. Ecol. Prog. Ser. 153, 181—190.
  • Muggeo, V.M., 2003. Estimating regression models with unknown break-points. Stat. Med. 22 (19), 3055—3071.
  • Nagata, T., 2000. Production mechanisms of dissolved organic matter. In: Kirchman, D.L. (Ed.), Microbial Ecology of the Oceans. Wiley-Liss, New York, 121—152.
  • Nakano, Y., Watanabe, Y.W., 2005. Reconstruction of pH in the surface sea-water over the North Pacific Basin for all seasons using temperature and chlorophyll-a. J. Oceanogr. 61, 673— 680.
  • Norusis, M., 2012. IBM SPSS Statistics 19 Advanced Statistical Procedures Companion. Prentice Hall, Upper Saddle River, NJ, 464.
  • Omstedt, A., Humborg, Ch., Pempkowiak, J., Perttila, M., Rutgersson, A., Schneider, B., Smith, B., 2014. Biogeochemical control of the coupled CO2—O2 system of the Baltic Sea: a review of the results of Baltic-C. AMBIO 43, 49—59, http://dx.doi.org/10.1007/ s13280-013-0485-4.
  • Otto, S., Balzer, W., 1998. Release of dissolved organic carbon (DOC) from sediments of the NW European Continental Margin (Goban Spur) and its significance for benthic carbon cycling. Prog. Oceanogr. 42, 127—144.
  • Pempkowiak, J., 1983. C18 reversed-phase trace enrichment of short-and long-chain (C2—C8—C20) fatty acids from dilute aqueous solutions and sea water. J. Chromatogr. 258, 93—102.
  • Pempkowiak, J., Kupryszewski, G., 1980. The input of organic matter to the Baltic from the Vistula River. Oceano 12, 80—98.
  • Pempkowiak, J., Walkusz-Miotk, J., Be1dowski, J., Walkusz, W., 2006. Heavy metals in zooplankton from the Southern Baltic. Chemos 62, 1697—1708.
  • Pempkowiak, J., Widrowski, M., Kuliński, W., 1984. Dissolved organic carbon and particulate carbon in the Southern Baltic in September 1982. In: Proceedings XIV Conference of Baltic Oceanographers, IMGW, Gdynia, 699—713.
  • Schneider, B., Nausch, G., Nagel, K., Wasmund, N., 2003. The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation. J. Mar. Syst. 42 (1—2), 53—64.
  • Seager, S.L., Slabaugh, M.R., 2004. Chemistry for Today: General, Organic, and Biochemistry. Thomson Brooks/Cole, 342.
  • Segar, D.A., 2012. Introduction to Ocean Science, 3rd ed., First electronic edition, Version 3.0, 525.
  • Steinberg, D.K., Lomas, M.W., Cope, J.S., 2012. Long-term increase in mesozooplankton biomass in the Sargasso Sea: linkage to climate and implications for food web dynamics and biogeochemical cycling. Global Biogeochem. Cycles 26 (1), 1—16.
  • Ston, J., Kosakowska, A., Łotocka, M., Łysiak-Pastuszak, E., 2002. Pigment composition in relation to phytoplankton community structure and nutrient content in the Baltic Sea. Oceanologia 44 (4), 419—437.
  • Szymczycha, B., Pempkowiak, J., 2014. Could groundwater be a significant carbon source to the Baltic sea? Oceanologia 56 (2), 327—347.
  • Voipio, A., 1981. The Baltic Sea, vol. 30. Elsevier, Amsterdam, 148.
  • Wasmund, N., Uhlig, S., 2003. Phytoplankton trends in the Baltic Sea. J. Mar. Sci. 60, 177—186.
  • Winogradow, A., Pempkowiak, J., 2014. Organic carbon burial rates in the Baltic Sea sediments. Estuar. Coast. Shelf Sci. 138, 27—36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a6c7647-18f5-410e-bd94-c7cf329740ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.