PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gravitational waves in a quantum electrodynamic perspective

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Resent scientific progress has suggested that gravitational waves can, under certain conditions, be reflected in a similar manner to electromagnetic waves. As a consequence, it is necessary for scientists to begin incorporating the theories of electromagnetic wave optics unto gravitational waves in order to better understand their physical behavior. This manuscript attempts to extrapolate the behavior of a gravitational wave trapped in a Fabry–Pérot cavity by utilizing theories used to model an electromagnetic wave trapped under similar conditions. Using classical optical theories, it is determined that a pair of microscopic black holes with a mass of ~7.38 × 1014 kg separated by a distance of 1 micron would generate a gravitation wave of approximately 100 GHz. Moreover, the shortcomings of classical theories of gravity are discussed as they are applied to microscopic scales.
Słowa kluczowe
Czasopismo
Rocznik
Strony
327--336
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Detroit Medical Products Laboratory, Food and Drug Administration, United States Department of Health and Human Services, 300 River Pl. Dr. Suite 6700, Detroit, MI 48207
Bibliografia
  • [1] KELLEY A.M., Condensed-Phase Molecular Spectroscopy and Photophysics, 2nd Ed., John Wiley & Sons, 2022.
  • [2] ATKINS P., DE PAULA J., KEELER J., Physical Chemistry, 11th Ed., Oxford University Press, 2002.
  • [3] EBBESEN T.W., Hybrid light–matter states in a molecular and material science perspective, Accounts of Chemical Research 49(11), 2016: 2403-2412. https://doi.org/10.1021/acs.accounts.6b00295
  • [4] MUKAMEL S., Principles of Nonlinear Optical Spectroscopy, Oxford University Press, 1995.
  • [5] FLANAGAN E.E., HUGHES S.A., The basics of gravitational wave theory, New Journal of Physics 7, 2005: 204. https://doi.org/10.1088/1367-2630/7/1/204
  • [6] KASTNER R.E., On visibility in the Afshar two-slit experiment, Foundation of Physics 39, 2009: 1139-1144. https://doi.org/10.1007/s10701-009-9329-2
  • [7] HU J., YU H., High frequency background gravitational waves from spontaneous emission of gravitons by hydrogen and helium, The European Physical Journal C 81, 2021: 470. https://doi.org/10.1140/epjc/s10052-021-09263-w
  • [8] PINTO F., Gravitational Casimir effect, the Lifshitz theory, and the existence of gravitons, Classical and Quantum Gravity 33(23), 2016: 237001. https://doi.org/10.1088/0264-9381/33/23/237001
  • [9] CASTELVECCHI D., WITZE A., Einstein’s gravitational waves found at last, Nature, 2016. https://doi.org/10.1038/nature.2016.19361
  • [10] LIDZEY D.G., BRADLEY D.D.C., SKOLNICK M.S., VIRGILI T., WALKER S., WHITTAKER D.M., Strong exciton–photon coupling in an organic semiconductor microcavity, Nature 395, 1998: 53-55. https://doi.org/10.1038/25692
  • [11] EINSTEIN A., Does the inertia of a body depend upon its energy-content?, Annalen der Physik 18, 1905: 639-641.
  • [12] ARGYRES P.C., DIMOPOULOS S., MARCH-RUSSELL J., Black holes and sub-millimeter dimensions, Physics Letters B 441(1-4), 1998: 96-104. https://doi.org/10.1016/S0370-2693(98)01184-8
  • [13] CUTLER C., FLANAGAN E.E., Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform?, Physical Review D 49, 1994: 2658-2697. https://doi.org/10.1103/PhysRevD.49.2658
  • [14] VANDEVENDER A.P., VANDEVENDER J.P., Structure and Mass Absorption of Hypothetical Terrestrial Black Holes, (to be published).
  • [15] MINTER S. J., WEGTER-MCNELLY K., CHIAO R.Y., Do mirrors for gravitational waves exist?, Physica E: Low-dimensional Systems and Nanostructures 42(3), 2010: 234-255. https://doi.org/10.1016/j.physe.2009.06.056
  • [16] HOPFIELD J.J., Theory of the contribution of excitons to the complex dielectric constant of crystals, Physical Review Journals 112, 1958: 1555. https://doi.org/10.1103/PhysRev.112.1555
  • [17] AGRANOVICH V.M., Dispersion of electromagnetic waves in crystals, Journal of Experimental and Theoretical Physics 10, 1960: 307.
  • [18] WEISBUCH C., NISHIOKA M.,ISHIKAWA A., ARAKAWA Y., Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Physical Review Letters 69, 1992: 3314. https://doi.org/10.1103/PhysRevLett.69.3314
  • [19] AVRAMENKO A.G., Chemical applications of hybridized light-matter states (a review), Issues of Chemistry and Chemical Technology 4, 2023: 3-16.
  • [20] SALEH B.E., TEICH M.C., Fundamentals of Photonics, 3rd Ed., John Wiley & Sons, New York, 2019.
  • [21] BATE R.R., MUELLER D.D., WHITE J.E., The Fundamentals of astrodynamics, Dover Publications, New York, 1971.
  • [22] BARANSKI A., The atomic mass unit, the Avogadro constant, and the mole: A way to understanding, Journal of Chemical Education 89(1), 2012: 97-102. https://doi.org/10.1021/ed2001957
  • [23] CHOPTUIK M.W., PRETORIUS F., Ultrarelativistic particle collisions, Physical Review Letters 104,2010: 111101. https://doi.org/10.1103/PhysRevLett.104.111101
  • [24] PEATROSS J., WARE M., Physics of Light and Optics, Brigham Young University, 2011.
  • [25] HAWKING S.W., Black hole explosions?, Nature 248, 1974: 30-31. https://doi.org/10.1038/248030a0
  • [26] GUIDRY M. W., GUIDRY M., Modern General Relativity: Black Holes, Gravitational Waves, and Cosmology, Cambridge University Press, Cambridge UK, 2019.
  • [27] ERICSSON J., The temperature of the Sun, Nature 4, 1871: 487. https://doi.org/10.1038/004487d0
  • [28] HEISENBERG W., Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik 43, 1927: 172-198. https://doi.org/10.1007/BF01397280
  • [29] LASKY P.D., Gravitational waves from neutron stars: A review, Publications of the Astronomical Society of Australia 32, 2015: e034. https://doi.org/10.1017/pasa.2015.35
  • [30] POLLNAU M., Are absorption and spontaneous or stimulated emission inverse processes? The answer is subtle!, Applied Physics B 125, 2019: 25. https://doi.org/10.1007/s00340-019-7133-z
  • [31] BORGHI R., Quantum harmonic oscillator: an elementary derivation of the energy spectrum, European Journal of Physics 38(2), 2017: 025404. https://doi.org/10.1088/1361-6404/aa57cf
  • [32] AVRAMENKO A.G., RURY A.S., Cavity polaritons formed from spatially separated quasi-degenerate porphyrin excitons: Structural modulations of bright and dark state energies and compositions, The Journal of Physical Chemistry C 126(37), 2022: 15776-15787. https://doi.org/10.1021/acs.jpcc.2c04121
  • [33] ANDRÉ R., HEGER D., DANG L. S., D'AUBIGNÉ Y.M., Spectroscopy of polaritons in CdTe-based microcavities, Journal of Crystal Growth 184-185, 1998: 758-762. https://doi.org/10.1016/S0022-0248(98)80158-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a5f8dd5-b5df-4f47-be82-abaed03665ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.