PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of anionic surfactant on the surface structure of nanofiltration membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of anionic surfactant on the surface structure of nanofiltration membranesAbstract: The effect of cleaning bath – sodium dodecyl sulphate solution on the surface structure of the polymer membrane used during nanofiltration of concentrated salt solutions have been presented in this paper. It was found that the use of the cleaning bath with sodium dodecyl sulphate caused a significant reduction in the separation and permeability possibilities of tested membrane.
Rocznik
Strony
33--38
Opis fizyczny
Bibliogr. 32 poz., rys., wykr., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Kazimierz Pulaski University of Technology and Humanities in Radom, Department of Environmental Protection, Chrobrego 27, Radom, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • [1] A.B. Koltuniewicz, E. Drioli, Membrane in clean technology. Theory and practice, Vol.1-2, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
  • [2] S. Ghizellaoui, A. Chibani, S. Ghizellaoui, Use of nanofiltration for partial softening of very hard water, Desalination 179 (2005) 315-322.
  • [3] A. Orecki, M. Tomaszewska, K. Karakulski, A.W. Morawski, Surface water treatment by the nanofiltration method, Desalination 162 (2004) 47-54.
  • [4] L.M. Ortega, R. Lebrun, J.F. Blais, R. Hausler, Removal of metal ions from an acidic leachate solution by nanofiltration membranes, Desalination 227 (2008) 204-216.
  • [5] Z. Wang, G. Liu, Z. Fan, X. Yang, J. Wang, S. Wang, Experimental study on treatment of electroplating wastewater by nanofiltration, J. Membr. Sci. 305 (2007) 185-195.
  • [6] S. Yu, M. Liu, M. Ma, M. Qi, Z. Lu, C. Gao, Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes, J. Membr. 350 (2010) 83-91.
  • [7] W.J. Lau, A.F. Ismail, Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control - a review, Desalination 245 (2009) 321-348.
  • [8] L.M. Ortega, R. Lebrun, I.M. Noël, R. Hausler, Application of nanofiltration in the recovery of chromium(III) from tannery effluents, Sep. Purif. Technol. 44 (2005) 45-52.
  • [9] S. Gomes, S.A. Cavaco, M.J. Quina, L.M. Gando-Ferreira, Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis, Desalination 254 (2010) 80-89.
  • [10] J. Tanninen, M. Mänttäri, M. Nyström, Effect of salt mixture concentration on fractionation with NF membranes, J. Membr. Sci. 283 (2006) 57-64.
  • [11] P. Religa, A. Kowalik, P. Gierycz, Application of nanofiltration for chromium concentration in the tannery wastewater, J. Ha - zard. Mater. 186 (2011) 288-292.
  • [12] P. Religa, A. Kowalik, P. Gierycz, Effect of membrane properties on chromium(III) recirculation from concentrate salt mixture solution by nanofiltration, Desalination 274 (2011) 164-170.
  • [13] P. Religa, A. Kowalik, P. Gierycz, A new approach to chromium concentration from salt mixture solution using nanofiltration, Sep. Purif. Technol. 82 (2011) 114-120.
  • [14] R.R. Sharna, S. Chellam, Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries, J. Colloid Interface Sci. 328 (2008) 353-366.
  • [15] E. Arkhangelsky, F. Wicaksana, S. Chou, A.A. Al-Rabiah, S.M. Al-Zahrani, R. Wang, Effects of scaling and cleaning on the performance of forward osmosis hollow fiber membranes, J. Membr. Sci. 415-416 (2012) 101-108.
  • [16] E.M. Vrijenhoek, S. Hong, M. Elimelech, Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes, J. Membr. Sci. 188 (2001) 115-128.
  • [17] D. Nanda, K.L. Tung, Y.L. Li, N.J. Lin, C.J. Chuang, Effect of pH on membrane morphology, fouling potential, and filtration performance of nanofiltration membrane for water softening, J. Membr. Sci. 349 (2010) 411-420.
  • [18] P. Religa, A. Kowalik-Klimczak, P. Gierycz, Study on the behavior of nanofiltration membranes using for chromium(III) recovery from salt mixture solution, Desalination 315 (2013) 115-123.
  • [19] W.S. Ang, N.Y. Yip, A. Tiraferri, M. Elimelech, Chemical cleaning of RO membranes fouled by wastewater effluent: Achieving higher efficiency with dual-step cleaning, J. Membr. Sci. 382 (2011) 100-106.
  • [20] R. Liikanen, J. Yli-Kuivila, R. Laukkanem, Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally- treated surface water, J. Membr. Sci. 195 (2002) 265-276.
  • [21] A. Al-Amoudi, P. Williams, S. Mandale, R.W. Lovitt, Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability, Sep. Purif. Technol. 54 (2007) 234-240.
  • [22] S.S. Madaemi, S. Samieirad, Chemical cleaning of reverse osmosis membrane fouled by wastewater, Desalination 257 (2010) 80-86.
  • [23] W.S. Ang, N.Y. Yip, A. Tiraferri, M. Elimelech, Chemical cleaning of RO membranes fouled by wastewater effluent: Achieving higher efficiency with dual-step cleaning, J. Membr. Sci. 382 (2011) 100-106.
  • [24] R. Liikanen, J. Yli-Kuivila, R. Laukkanem, Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally- treated surface water, J. Membr. Sci. 195 (2002) 265-276.
  • [25] K. Boussu, A. Belpaire, A. Volodin, C. Van Haesendonck, P. Van der Meeren, C. Vandecasteele, B. Van der Bruggen, Influence of membrane and colloid characteristics on fouling of nanofiltration membranes, J. Membr. Sci. 289 (2007) 220-230.
  • [26] C.Y. Tanga, Y-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physicochemical properties of thin film composite polyamide RO and NF membranes. II. Membrane physicochemical properties and their dependence on polyamide and coating layers, Desalination 242 (2009) 168- 182.
  • [27] A.L. Carvalho, F. Maugeri, V. Silva, A. Hernandez, L. Palacio, P. Pradanos, AFM analysis of the surface of nanoporous membranes: application to the nanofiltration of potassium clavulanate, J. Mater. Sci. 46 (2011) 3356-3369.
  • [28] A.E. Childress, M. Elimelech, Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristic, Environ. Sci. Technol. 34 (2000) 3710-3716.
  • [29] A. Al-Amoudi, R.W. Lovitt, Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency, J. Membr. Sci. 303 (2007) 4-28.
  • [30] Y. Mansourpanah, K. Alizadeh, S.S. Madaeni, A. Rahimpour, H. Soltani Afarani, Using different surfactants for changing the properties of poly(piperazineamide) TFC nanofiltration membranes, Desalination 271 (2011) 169-177.
  • [31] Y. Mansourpanah, S.S. Madaeni, A. Rahimpour, Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance, J. Membr. Sci. 343 (2009) 219-228.
  • [32] A. Rahimpour, S.S. Madaeni, Y. Mansourpanah, The effect of anionic, non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration, J. Membr. Sci. 296 (2007) 110-121.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a5f492b-ef01-4a2c-a828-1a2af9e6114e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.