PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Life cycle assessment of cobalt extraction process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of an investigation carried out on the impacts of cobalt extraction process using a life cycle assessment by considering a cradle-to-gate system. Life cycle inventory data was collected from the EcoInvent and Australian Life cycle assessment database (AusLCI) and analysis were performed using SimaPro software employing the International Reference Life Cycle Data System (ILCD) method, and Cumulative Energy Demand method (CED) for per kg of cobalt production. Several impact categories are considered in the analysis i.e. global warming, ozone depletion, eutrophication, land use, water use, fossil fuels, minerals, human toxicity, ecotoxicity, and cumulative energy demand. The analysis results indicate that among the impact categories, eutrophication and global warming impacts are noteworthy. Medium voltage electricity used in cobalt production and the blasting operation appears to be causing most of the impact and emission into the environment. The sensitivity analysis was carried out using three different case scenarios by altering the electricity generation sources of UCTE (Synchronous Grid of Continental Europe) to investigate the proportional variation of impact analysis results. Furthermore, the impacts caused by cobalt production are compared with nickel and copper production processes to reveal their relative impacts on the environment and ecosystems.
Rocznik
Strony
150--161
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Sustainable Energy Systems Engineering Group, School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
autor
  • Sustainable Energy Systems Engineering Group, School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
  • Sustainable Energy Systems Engineering Group, School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
Bibliografia
  • 1. Acero, A. A. P., Rodriguez, C., & Ciroth, A. (2015). LCIA methods Impact assessment methods in Life Cycle Assessment and their impact categories, (January 2014). 1-22.
  • 2. Agwa-Ejon, J. F., & Pradhan, A. (2018). Life cycle impact assessment of artisanal sandstone mining on the environment and health of mine workers. Environmental Impact Assessment Review, 72, 71-78. (November 2017) http://doi.org/10.1016/j.eiar.2018. 05.005.
  • 3. Awuah-Offei, K., & Adekpedjou, A. (2011). Application of life cycle assessment in the mining industry. International Journal of Life Cycle Assessment, 16(1), 82-89. http://doi.org/10.1007/s11367-010-0246-6.
  • 4. Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9(3), 193-199. http://doi.org/10.7150/ijms.3635.
  • 5. Burchart-Korol, D. (2011). Significance of environmental life cycle assessment (LCA) method in the iron and steel industry. Metalurgija, 50(3), 205-208.
  • 6. Burchart-Korol, D. (2013). Life cycle assessment of steel production in Poland: A case study. Journal of Cleaner Production, 54, 235-243. http://doi.org/10.1016/j.jclepro.2013.04.031.
  • 7. Chang, E. L., Simmers, C., & Knight, D. A. (2010). Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals, 3(6), 1711-1728. http://doi.org/10.3390/ ph3061711.
  • 8. Chen, W., Geng, Y., Hong, J., Dong, H., Cui, X., Sun, M., & Zhang, Q. (2018). Life cycle assessment of gold production in China. Journal of Cleaner Production, 179, 143-150. http://doi.org/10.1016/j.jclepro.2018.01.114.
  • 9. Curran, M. A. (2012). Life cycle assessment Handbook. http://doi.org/10.1002/9781118528372.
  • 10. ILCD Handbook. (2010). European Commission-Joint Research Centre-Institute for Environment and Sustainability (2010). International reference life cycle data system (ILCD) Handbook-general guide for life cycle assessment-detailed guidance. Constraints. http://doi.org/10.2788/38479.
  • 11. Farjana, S. H., Huda, N., & Mahmud, M. A. P. (2019a). Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment. The Science of the Total Environment, 663, 958-970. http://doi.org/10.1016/j.scitotenv.2019.01.400.
  • 12. Farjana, S. H., Huda, N., & Mahmud, M. A. P. (2019b). Life cycle analysis of copper-goldlead-silver-zinc beneficiation process. The Science of the Total Environment, 659, 41-52. http://doi.org/10.1016/j.scitotenv.2018.12.318.
  • 13. Farjana, S. H., Huda, N., Mahmud, M. A. P., & Lang, C. (2018a). Comparative life-cycle assessment of uranium extraction processes in Australia. Journal of Cleaner Production, 202, 666-683. http://doi.org/10.1016/j.jclepro.2018.08.105.
  • 14. Farjana, S. H., Huda, N., Mahmud, M. A. P., & Lang, C. (2018b). Towards sustainable TiO 2 production : An investigation of environmental impacts of ilmenite and rutile processing routes in Australia. Journal of Cleaner Production, 196, 1016-1025. http://doi.org/10.1016/j.jclepro.2018.06.156.
  • 15. Farjana, S. H., Huda, N., Mahmud, M. A. P., & Saidur, R. (2018a). Solar industrial process heating systems in operation - current SHIP plants and future prospects in Australia. Renewable and Sustainable Energy Reviews, 91 http://doi.org/10.1016/j.rser.2018.03. 105.
  • 16. Farjana, S. H., Huda, N., Mahmud, M. A. P., & Saidur, R. (2018b). Solar process heat in industrial systems - a global review. Renewable and Sustainable Energy Reviews, 82, 2270-2286. https://doi.org/10.1016/j.rser.2017.08.065.
  • 17. Farjana, S. H., Huda, N., & Mahmud, M. A. P. (2018a). Environmental impact assessment of european non-ferro mining industries through life-cycle assessment. IOP Conference Series: Earth and Environmental Science, 154. https://doi.org/10.1088/1755-1315/154/1/012019.
  • 18. Farjana, S. H., Huda, N., & Mahmud, M. A. P. (2018b). Life-Cycle environmental impact assessment of mineral industries. IOP Conference Series: Materials Science and Engineering, 351http://doi.org/10.1088/1757-899X/351/1/012016.
  • 19. Ferreira, H., & Leite, M. G. P. (2015). A Life Cycle Assessment study of iron ore mining. Journal of Cleaner Production, 108(October), 1081-1091. http://doi.org/10.1016/j. jclepro.2015.05.140.
  • 20. Fisher, K. G. (2011). Cobalt processing developments. The southern african institute of mining and metallurgy 6th southern african base metals conference (pp. 237-258). .
  • 21. Fordyce, F. M. (2013). Selenium deficiency and toxicity in the environment. Essentials of Medical Geology: Revised Edition, 375-416. http://doi.org/10.1007/978-94-007- 4375-5_16.
  • 22. Frischknecht, R., Jungbluth, N., Althaus, H.-J., Doka, G., Dones, R., Heck, T., Hellweg, S., Hischier, R., Nemecek, T., Rebitzer, G., & Spielmann, M. (2005). The ecoinvent database: Overview and methodological framework. International Journal of Life Cycle Assessment, 10, 3-9.
  • 23. Haque, N., & Norgate, T. (2014). The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia. Journal of Cleaner Production, 84(1), 382-390. http://doi.org/10.1016/j.jclepro.2013.09.033.
  • 24. Hischier, R., Weidema, B., Althaus, H.-J., Bauer, C., Doka, G., Dones, R., ... Nemecek, T. (2010). Implementation of life cycle impact assessment methods data v2.2 (2010), Vol. 3, 176 Ecoinvent Report No. 3.
  • 25. International, P. E. (2014). Harmonization of LCA methodologies for metals: A whitepaper providing guidance for conducting LCAs for metals and metal products.
  • 26. JRC European commission (2011). ILCD Handbook: Recommendations for life cycle impact assessment in the european context. Vasa. http://dx.doi.org/10.2788/33030.
  • 27. Khoo, J. Z., Haque, N., Woodbridge, G., McDonald, R., & Bhattacharya, S. (2017). A life cycle assessment of a new laterite processing technology. Journal of Cleaner Production, 142, 1765-1777. http://doi.org/10.1016/j.jclepro.2016.11.111.
  • 28. Li, G. H., Rao, M. J., Li, Q., Peng, Z. W., & Jiang, T. (2010). Extraction of cobalt from laterite ores by citric acid in presence of ammonium bifluoride. Transactions of Nonferrous Metals Society of China, 20(8), 1517-1520. http://doi.org/10.1016/S1003-6326(09)60331-9.
  • 29. Mahmud, M. A. P., Huda, N., Farjana, S. H., & Lang, C. (2018a). Environmental profile evaluations of piezoelectric polymers using life cycle assessment. IOP Conference Series: Earth and Environmental Science, 154, 012017. https://doi.org/10.1088/1755-1315/154/1/012017.
  • 30. Mahmud, M. A. P., Huda, N., Farjana, S. H., & Lang, C. (2018b). Environmental life-cycle assessment and techno-economic analysis of photovoltaic ( PV ) and photovoltaic/ thermal ( PV/T ) systems. 2018 IEEE international conference on environment and electrical engineering and 2018 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe) (pp. 1-5). .
  • 31. Mahmud, M. A. P., Huda, N., Farjana, S. H., & Lang, C. (2018c). Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment. IOP Conference Series: Materials Science and Engineering, 351 http://doi.org/10.1088/1757-899X/351/1/012006.
  • 32. Mahmud, M., Huda, N., Farjana, S., & Lang, C. (2018d). Environmental impacts of solarphotovoltaic and solar-thermal systems with life-cycle assessment. Energies, 11(9), 2346. 2018 http://doi.org/10.3390/EN11092346.
  • 33. Mahmud, M. A. P., Huda, N., Farjana, S. H., & Lang, C. (2019). Analysis of lithium-ion ( LiIo ) and nickel-metal hydride ( NiMH ) batteries. http://doi.org/10.3390/batteries5010022.
  • 34. Marguerite, R., Tim, G., Maartje, S., James, L., Brad, R., Fabiano, X., ... Joe, J. (2015). Best practice guide for life cycle impact assessment ( LCIA ) in Australia ALCAS impact assessment committee. ALCAS Impact Assessment Committee ((July)).
  • 35. Mistry, M., Gediga, J., & Boonzaier, S. (2016). Life cycle assessment of nickel products. International Journal of Life Cycle Assessment, 21(11), 1559-1572. http://doi.org/10.1007/s11367-016-1085-x.
  • 36. Norgate, T., & Haque, N. (2010). Energy and greenhouse gas impacts of mining and mineral processing operations. Journal of Cleaner Production, 18(3), 266-274. http://doi.org/10.1016/j.jclepro.2009.09.020.
  • 37. Northey, S. A., Haque, N., Lovel, R., & Cooksey, M. A. (2014). Evaluating the application of water footprint methods to primary metal production systems. Minerals Engineering, 69, 65-80. http://doi.org/10.1016/j.mineng.2014.07.006.
  • 38. Northey, S., Haque, N., & Mudd, G. (2013). Using sustainability reporting to assess the environmental footprint of copper mining. Journal of Cleaner Production, 40, 118-128. http://doi.org/10.1016/j.jclepro.2012.09.027.
  • 39. Nunez, P., & Jones, S. (2016). Cradle to gate: Life cycle impact of primary aluminium production. International Journal of Life Cycle Assessment, 21(11), 1594-1604. http://doi.org/10.1007/s11367-015-1003-7.
  • 40. Nuss, P., & Eckelman, M. J. (2014). Life cycle assessment of metals: A scientific synthesis. PLoS One, 9(7), 1-12. http://doi.org/10.1371/journal.pone.0101298.
  • 41. Ober, J. A. (2017). Mineral commodity summaries 2017. Mineral commodity summaries. https://doi.org/10.3133/70140094.
  • 42. Pazik, P. M., Chmielewski, T., Glass, H. J., & Kowalczuk, P. B. (2016). World production and possible recovery of cobalt from the Kupferschiefer stratiform copper ore. E3S web of conferences: Vol. 8 http://doi.org/10.1051/e3sconf/20160801063.
  • 43. Ruokonen, E.-L., Linnainmaa, M., Seuri, M., Juhakoski, P., & Soderstrom, K.-O. (1996). A fatal case of hard-metal disease. Scandinavian Journal of Work, Environment & Health, 22(1), 62-65. http://doi.org/10.5271/sjweh.111.
  • 44. Schmidt, J. H., & Thrane, M. (2009). Life cycle assessment of aluminium production in new Alcoa smelter in Greenland University 2009.
  • 45. Tan, R. B. H., & Khoo, H. H. (2005). An LCA study of a primary aluminum supply chain. Journal of Cleaner Production, 13(6), 607-618. http://doi.org/10.1016/j.jclepro.2003.12.022.
  • 46. Tkaczyk, A. H., Bartl, A., Amato, A., Lapkovskis, V., & Petranikova, M. (2018). Sustainability evaluation of essential critical raw materials: Cobalt, niobium, tungsten and rare earth elements. Journal of Physics D: Applied Physics, 51(20), 203001. http://doi.org/10.1088/1361-6463/aaba99.
  • 47. U.S. Geological Survey (2018). Mineral commodity summaries. U.S. Geological Survey http://doi.org/10.3133/70194932.
  • 48. Weidema, B. P., & Norris, G. a. (2002). Avoiding co-product allocation in the metals sector. ICMM international workshop on life cycle assessment and metals, (1998).
  • 49. Westfall, L. A., Davourie, J., Ali, M., & McGough, D. (2016). Cradle-to-gate life cycle assessment of global manganese alloy production. International Journal of Life Cycle Assessment, 21(11), 1573-1579. http://doi.org/10.1007/s11367-015-0995-3.
  • 50. Zhao, Y., Gao, J. M., Yue, Y., Peng, B., Que, Z. Q., Guo, M., & Zhang, M. (2013). Extraction and separation of nickel and cobalt from saprolite laterite ore by microwave-assisted hydrothermal leaching and chemical deposition. International Journal of Minerals, Metallurgy and Materials, 20(7), 612-619. http://doi.org/10.1007/s12613-013-0774-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a54f0f5-104a-49b8-9d50-07b1e1a3255a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.