PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The titanium–aluminium–niobium alloy is used in bone, dental and articular prosthetics, where high final surface quality is required. Bone scaffolds for tissue engineering require optimized cellular structures to provide pore diameters allowing the growth of osteoblasts. The aim of the presented paper is to estimate the quality of surface treatment of components with complex spatial structure, made of Ti–6Al–7Nb alloy by powder-bed selective laser melting (SLM), which is one of the additive manufacturing technologies for metal materials. Test pieces were subjected to chemical polishing to improve surface quality and remove loose powder particles trapped in the porous structure. It was found that resulting surface roughness and reduction of the number of non-melted powder particles on the scaffold surface are influenced mostly by chemical composition and concentration of the bath, as well as the method of medium delivery and exchange during the process. Further investigations were aimed at optimizing the process and increasing the number of workpieces processed in a single lot.
Rocznik
Strony
586--594
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Technology, Faculty of Mechanical Engineering, CAMT – FPC, 5 Łukasiewicza Street, 50-371 Wrocław, Poland
autor
  • Wrocław University of Technology, Faculty of Mechanical Engineering, CAMT – FPC, 5 Łukasiewicza Street, 50-371 Wrocław, Poland
autor
  • Wrocław University of Technology, Faculty of Mechanical Engineering, CAMT – FPC, 5 Łukasiewicza Street, 50-371 Wrocław, Poland
autor
  • Wrocław University of Technology, Faculty of Mechanical Engineering, CAMT – FPC, 5 Łukasiewicza Street, 50-371 Wrocław, Poland
Bibliografia
  • [1] J. Adamus, M. Gierzyńska-Dolna, Titanium and modern material used for implants, Inżynieria Materiałowa 3 (2012) 189–192.
  • [2] K. Alvarez, H. Nakajima, Metallic scaffolds for bone regeneration, Materials 2 (2009) 790–832.
  • [3] S. Bagdach, et al., Poradnik galwanotechnika, Scientific Publishing House PWN, Warsaw, 1994.
  • [4] M.A. Birch, S.S. Johnson-Lynn, Q.-B. Nouraei Wu, S. Ngalim, W.-J. Lu, C. Watchorn, T.-Y. Yang, A.W. McCaskie, S. Roy, Effect of electrochemical structuring of Ti6Al4V on osteoblast behaviour in vitro, Biomedical Materials 7 (2012) 1–14.
  • [5] Chemical and Electrolytic Polishing, Metallography and Microstructures, vol. 9, ASM Handbook, ASM International, 2004.
  • [6] E. Chlebus, B. Kuźnicka, T. Kurzynowski, B. Dybała, Microstructure and mechanical behaviour of Ti–6Al–7Nb alloy produced by selective laser melting, Materials Characterization 62 (2011) 488–495.
  • [7] B. Dąbrowski, W. Święszkowski, D. Godliński, K.J. Kurzydłowski, Highly porous titanium scaffolds for orthopaedic applications, Journal of Biomedical Materials Research Part B: Applied Biomaterials 95B (2010) 53–61.
  • [8] W. Grzesik, J. Małecka, Machining of titanium and Ti–Al alloys based on intermetallic phases, Nowe Technologie (2011) 136–142.
  • [9] G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, M. Wevers, Investigation of the influence of surface roughness modification of bone tissue engineering scaffolds on the morphology and mechanical properties, in: SkyScan User Meeting, Mechelen, Belgium, (2010), pp. 1–5.
  • [10] G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, M. Moesen, D. Loeckx, M. Wevers, Non-destructive characterization of the influence of surface modification on the morphology and mechanical behavior of rapid prototyped Ti6Al4V bone tissue engineering scaffolds, in: European Conference for Non- Destructive Testing (ECNDT), vol. 10, Moscow, Russia, (2010), pp. 1–9.
  • [11] J.D. Lee, Zwięzła chemia nieorganiczna, Scientific Publishing House PWN, Warsaw, 1994312–318.
  • [12] M.F. López, A. Gutierrez, J.A. Jimenez, In vitro corrosion behaviour of titanium alloys without vanadium, Electrochimica Acta 47 (2002) 1359–1364.
  • [13] C. Madore, D. Landolt, Electrochemical micromachining of controlled topographies on titanium for biological applications, Journal of Micromechanics and Microengineering 7 (1997) 270–275.
  • [14] K.E. Oczoś, Machining of titanium and its alloys in aircraft industry and medical technology, Mechanik 8–9 (2008) 639–656.
  • [15] K.E. Oczoś, Machining of titanium and its alloys in aircraft industry and medical technology, Mechanik 10 (2008) 753–767.
  • [16] R. Orlicki, B. Kłaptocz, Titanium and its alloys – properties, application in dentistry and processing methods, Inżynieria Stomatologiczna Biomateriały 1 (2005) 4–9.
  • [17] D. Regonini, A. Jaroenworaluck, R. Stevensa, C.R. Bowena, Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition, Surface and Interface Analysis 42 (2010) 139–144.
  • [18] W. Simka, M. Mosiałek, G. Nawrat, P. Nowak, J. Żak, J. Szade, A. Winiarski, A. Maciej, L. Szyk-Warszyńska, Electrochemical polishing of Ti–13Nb–13Zr alloy, Surface & Coatings Technology 213 (2012) 239–246.
  • [19] W. Simka, G. Nawrat, J. Chłodek, A. Maciej, A. Winiarski, J. Szade, K. Radwański, J. Gazdowicz, Electrolytic polishing and anodic passivation of Ti–6Al–7Nb alloy, Przemysł Chemiczny 90 (2011) 84–90.
  • [20] C. Sitting, M. Textor, N.D. Spencer, M. Wieland, P.H. Vallotton, Surface characterization of implant materials c.p. Ti, Ti–6Al– 7Nb and Ti–6Al–4V with different pretreatments, Journal of Materials Science: Materials in Medicine 10 (1999) 35–46.
  • [21] P. Szymczyk, A. Junka, G. Ziółkowski, M. Bartoszewicz, E. Chlebus, The ability of S. aureus to form biofilm on the Ti–6Al– 7Nb scaffolds produced by selective laser melting and subjected to the different types of surface modifications, Acta of Bioengineering and Biomechanics 15 (2013) 69–76.
  • [22] S. Truscello, G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, H. Oosterwyck, Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study, Acta Biomaterialia 8 (2012) 1648–1658.
  • [23] M. Wehmöller, P.H. Warnke, C. Zilian, H. Eufinger, Implant design and production – a new approach by selective laser melting, International Congress Series 1281 (2005) 690–695.
  • [24] T. Wohlers, Report 2009, State of Industry, Annual Worldwide Progress Report, Wohlers Associates Inc., Colorado, 2009.
  • [25] S. Zaborski, M. Łupak, D. Poroś, Oxide layer on the surface of titanium alloy WT3-1 created during electrochemical-abrasive machining, Przegląd Mechaniczny 11 (2005) 25–29.
  • [26] L. Xuanyong, K. Chub Paul, C. Dinga, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering 47 (2004) 49–121.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a54843b-75c7-4e08-83f2-0091ea526a48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.