PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Damage characterization of aluminum 2024 thin sheet for different stress triaxialities

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to its attractive mechanical properties, aluminum 2024 is widely used in aircraft manufacturing industries, especially as fiber metal laminates, such as GLARE. In the present work, a series of experiments for different stress triaxialities are used to study the ductile damage of Al 2024 considering continuum damage mechanics (CDM). Stress triaxiality is produced using notched specimens. The main objective of the present study is to predict the local equivalent plastic strain to fracture and introducing a relation which describes the effect of stress triaxiality factor (TF) on it in the medium range of stress triaxiality. Hence, a nonlinear damage model is utilized for Al 2024 and its parameters are determined by an experimental/numerical/optimization procedure using tensile test on plain specimens. The experiments showed that for large notch specimens (Al-NL) and medium notch samples (Al-NM) fracture started from the center of the notch root of the specimens, whereas for small notched specimens (Al-NS) the failure initiated from the notch root surface. Finite element simulations are performed using the presented nonlinear damage model and are compared with the experimental data. Results show that the proposed damage model can predict the damage evolution for different stress triaxialities.
Rocznik
Strony
702--712
Opis fizyczny
Bibliogr. 37 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran
autor
  • Department of Mechanical Engineering, Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran
autor
  • Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
autor
  • Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
autor
  • Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
autor
  • Department of Robotics, Hamedan University of Technology, Hamedan, Iran
Bibliografia
  • [1] A.S.H. Makhlouf, M. Aliofkhazraei, Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries, Butterworth-Heinemann, 2015.
  • [2] M. Oyane, T. Sato, K. Okimoto, S. Shima, Criteria for ductile fracture and their applications, J. Mech. Work. Technol. 4 (1) (1980) 65–81.
  • [3] F.M. Andrade Pires, E.A. de Souza Neto, D.R.J. Owen, On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials, Comput. Methods Appl. Mech. Eng. 193 (48) (2004) 5223–5256.
  • [4] D. Aubry, G. Jay, B. Tie, R. Muzzolini, A combined mesh and model adaptive strategy for the scaling issues in the numerical modelling of the ductile damage in thin panels, Comput. Methods Appl. Mech. Eng. 192 (28) (2003) 3285–3300.
  • [5] A.H. van den Boogaard, J. Huétink, Simulation of aluminium sheet forming at elevated temperatures, Comput. Methods Appl. Mech. Eng. 195 (48) (2006) 6691–6709.
  • [6] F. Bron, J. Besson, Simulation of the ductile tearing for two grades of 2024 aluminum alloy thin sheets, Eng. Fract. Mech. 73 (11) (2006) 1531–1552.
  • [7] F.A. Ghasemi, G.R. Bagheri, A. Pourkamali, Experimental analysis of tensile strength of lateral notched aluminum plates reinforced by the Fiber metal laminate (FML) patches, J. Mod. Mech. Eng. 15 (3) (2015) 1–8.
  • [8] G.R. Rajkumar, M. Krishna, H.N. Narasimhamurthy, Y.C. Keshavamurthy, J.R. Nataraj, Investigation of tensile and bending behavior of aluminum based hybrid fiber metal laminates, Proc. Mater. Sci. 5 (0) (2014) 60–68.
  • [9] J. Xue, W.-X. Wang, Y. Takao, T. Matsubara, Reduction of thermal residual stress in carbon fiber aluminum laminates using a thermal expansion clamp, Compos. Part A: Appl. Sci. Manuf. 42 (8) (2011) 986–992.
  • [10] M. Kashfi, G.H. Majzoobi, N. Bonora, G. Iannitti, A. Ruggiero, E. Khademi, A study on fiber metal laminates by using a new damage model for composite layer, Int. J. Mech. Sci. 131–132 (2017) 75–80.
  • [11] J. Choung, W. Nam, D. Lee, C.Y. Song, Failure strain formulation via average stress triaxiality of an EH36 high strength steel, Ocean Eng. 91 (2014) 218–226.
  • [12] J. Seidt, A. Gilat, Plastic deformation of 2024-T351 aluminum plate over a wide range of loading conditions, Int. J. Solids Struct. 50 (10) (2013) 1781–1790.
  • [13] M. Luo, Ductile Fracture Characterization of an Aluminum Alloy Sheet using Numerical Simulations and Tests, Impact and Crashworthiness Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, 2008.
  • [14] J.D. Seidt, Plastic Deformation and Ductile Fracture of 2024- T351 Aluminum Under Various Loading Conditions, The Ohio State University, 2010.
  • [15] L. Xue, T. Wierzbicki, Ductile fracture characterization of aluminum alloy 2024-T351 using damage plasticity theory, Int. J. Appl. Mech. 1 (2) (2009) 267–304.
  • [16] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci. 46 (1) (2004) 81–98.
  • [17] N. Bonora, D. Gentile, A. Pirondi, G. Newaz, Ductile damage evolution under triaxial state of stress: theory and experiments, Int. J. Plast. 21 (5) (2005) 981–1007.
  • [18] L. Driemeier, M. Brünig, G. Micheli, M. Alves, Experiments on stress-triaxiality dependence of material behavior of aluminum alloys, Mech. Mater. 42 (2) (2010) 207–217.
  • [19] A. Bacha, D. Daniel, H. Klocker, On the determination of true stress triaxiality in sheet metal, J. Mater. Process. Technol. 184 (1–3) (2007) 272–287.
  • [20] W. Li, F. Liao, T. Zhou, H. Askes, Ductile fracture of Q460 steel: effects of stress triaxiality and Lode angle, J. Construct. Steel Res. 123 (2016) 1–17.
  • [21] A. Stefanik, H. Dyja, S. Mróz, Determination of the critical value of normalized cocroft – Latham criterion during multi slight rolling based on tensile test, Arch. Metall. Mater. (2011) 543.
  • [22] Z.F. Yue, C.Q. Zheng, Effect of triaxiality and temperature on void growth in a smooth and notched 40 Cr steel bar, Theor. Appl. Fract. Mech. 22 (2) (1995) 139–150.
  • [23] T.J. Wang, D.J. Li, F.S. Ma, Z.B. Kuang, Influence of stress triaxiality on damage and crack tip opening displacement parameters for steels, Theor. Appl. Fract. Mech. 22 (2) (1995) 151–158.
  • [24] P.G. Kossakowski, An analysis of the load-carrying capacity of elements subjected to complex stress states with a focus on the microstructural failure, Arch. Civ. Mech. Eng. 10 (2) (2010) 15–39.
  • [25] P.G. Kossakowski, Microstructural failure criteria for S235JR steel subjected to spatial stress states, Arch. Civ. Mech Eng. 15 (1) (2015) 195–205.
  • [26] N. Bonora, A nonlinear CDM model for ductile failure, Eng. Fract. Mech. 58 (1–2) (1997) 11–28.
  • [27] G.H. Majzoobi, M. Kashfi, N. Bonora, G. Iannitti, A. Ruggiero, E. Khademi, A new constitutive bulk material model to predict the uniaxial tensile nonlinear behavior of fiber metal laminates, J. Strain Anal. Eng. Des. (2017), http://dx.doi.org/ 10.1177/0309324717738630.
  • [28] C. Zhang, X. Chu, D. Guines, L. Leotoing, J. Ding, G. Zhao, Dedicated linear – Voce model and its application in investigating temperature and strain rate effects on sheet formability of aluminum alloys, Mater. Des. 67 (2015) 522–530.
  • [29] J. Lemaitre, A continuous damage mechanics model for ductile fracture, Transactions of the ASME, J. Eng. Mater. Technol. 107 (1) (1985) 83–89.
  • [30] M.R. Tupek, J.J. Rimoli, R. Radovitzky, An approach for incorporating classical continuum damage models in state- based peridynamics, Comput. Methods Appl. Mech. Eng. 263 (2013) 20–26.
  • [31] A. Pirondi, N. Bonora, Modeling ductile damage under fully reversed cycling, Comput. Mater. Sci. 26 (0) (2003) 129–141.
  • [32] N. Bonora, G.H. Majzoobi, E. Khademi, Numerical implementation of a new coupled cyclic plasticity and continum damage model, Comput. Mater. Sci. 81 (0) (2014) 538–547.
  • [33] W. Ramberg, W.R. Osgood, Description of Stress–strain Curves by Three Parameters, 1943.
  • [34] J. Lemaitre, H. Lippmann, A Course on Damage Mechanics, Springer, Berlin, 1996.
  • [35] N. Bonora, Identification and measurement of ductile damage parameters, J. Strain Anal. Eng. Des. 34 (6) (1999) 463–478.
  • [36] N. Bonora, D. Gentile, A. Pirondi, Identification of the parameters of a non-linear continuum damage mechanics model for ductile failure in metals, J. Strain Anal. Eng. Des. 39 (6) (2004) 639–651.
  • [37] G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1) (1985) 31–48.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a521706-1283-45cb-a8b2-d3d5cd99f181
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.