Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the Upper Vistula Basin, series of check dams are located on almost each of mountain stream. These streams are strongly affected by the presence of dams that disrupt the sediment movement in the channel. Moreover, the check dams are in poor technical condition. The current study focuses on the Krzczonówka Stream, a left-bank tributary of the Raba River, where restoration works were undertaken in 2014 involving lowering of a check dam. The aim of the project was the continuity of the stream corridor for fish migration restoration. This paper aims to provide an analysis of the streambed evolution and a numerical analysis of the impact of check dam lowering and removal of sediment, previously accumulated upstream under the geomorphologic conditions in the studied stream after three years of project execution. A 1D sediment transport model was employed to estimate the areas of erosion and deposition throughout the river course. The calculations show that the thickness of the deposited sediment ranged from 0.20 up to 0.91 m at 1.5 km of the reach. The layer thickness deposited form 2.1 to 1.75 km of the reach, is rather thin; subsequently, the layer thickness increases and the highest values are reached at the area of 1.35 – 1.7 km. The local erosion is observed in 1.1 km of the reach. It is very important to note that the identified erosional and accumulation tendencies are the same at corresponding cross sections measured as calculated based on the model. This also provides a practical form of model validation. Additionally, the stream channel evolution on the base on low annual water stages in Krzczonów gauging station, located downstream the dam, indicates that the bottom has increased in this section by about 50 cm. The comparison of cross-sectional geometry in years of 2015–2016 (after flood event) shows that the stream channel moved in the transverse direction (bank erosion and deposition) and the streambed level has changed slightly. Currently, the stream channel does not seem to be in a state of hydrodynamic equilibrium. Thus, further field measurements will try to indicate when this balance is achieved.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
188--196
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Institute of Water Engineering and Water Management, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
- 1. Bagnold R.A. 1966. An approach to the sediment transport problem from general physics., U.S. Geological Survey Professional Paper 422, 231–291.
- 2. EFD – 23 October 2000. http://tarliskagornejraby.pl
- 3. Hubicki S. Zabudowa potoków górskich (Mountain streams engineering), Nakł. Koła St. Inż. Las, Lwów, Politechnika 1927, część I, II, III, 5–172 (in Polish).
- 4. Jeleński J., Wyżga B. 2016. Możliwe techniczne i biologiczne interwencje w utrzymaniu rzek górskich, Stowarzyszenie Ab-Ovo, Kraków, 7–83.
- 5. Kaszowski L., Krzemień K. 1977. Structure of mountain channel systems as examplified by chosen Carpathian streams. Studia Geomorph. Carpatho-Balcan. 11, 111–125.
- 6. Klimek K. 1987. Man’s impact on fluvial processes in the Polish Western Carpathians. Geogr. Annaler 69 A, 221–226.
- 7. Korpak J. 2007. The influence of river training on mountain channel changes (Polish Carpathian Mountains). Geomorphology 92, 166–181.
- 8. Korpak J., Krzemień K., Radecki-Pawlik A. 2008. Influence of anthropogenic factors on chan ges of Carpathian stream channels. Monografia PAN, Oddział w Krakowie, 7–89 (in Polish).
- 9. Krishnappan, B.G. 1981. Unsteady, nonuniform, mobile boundary flow model – MOBED., Hydraulics Division, National Water Research Institute Burlington, Ontario, 1–100.
- 10. Lenar-Matyas A., Korpak J., Mączałowski A., Wolański K. 2015. Zmiany w przekrojach poprzecznych potoku Krzczonówka po przejściu fali powodziowej, Infrastruktura i Ekologia Terenów Wiejskich, PAN Oddział w Krakowie, nr 4, 965–977 (in Polish).
- 11. Łapuszek M. 2013. The establish and prediction of the river channel evolution of the left-side tributaries of the upper Vistula River. Monografia 446, Politechnika Krakowska, Kraków, 7–178 (in Polish).
- 12. Łapuszek M., Paquier A. 2007. Practical Application of 1-D Sediment Transport Model, Archives of Hydro-Engineering and Environmental Mechanics, 54(4), 183–198.
- 13. Meyer-Peter, E., Müller, R. 1948. Formulas for bed-load transport. Report on second meeting of IARH. IAHR, Stockholm, 39–64.
- 14. Park I., Jain S.C. 1987. Numerical simulation of degradation of alluvial channel beds. J. of Hydr. Eng., ASCE 113 No. 7 July, 845–850.
- 15. Paquier, A. 2003. What are the problems to be solved by a 1 – D river sediment transport model? Example of RubarBE software. Selected Problems of Water Engineering, Politechnika Krakowska – Cemagref – results of cooperation, 9 – 11 October 2003, seminary, Cemagref Editions 2004, BP 44, 92163 Antony, France, 75–85.
- 16. Project No. 46/43/1473.
- 17. Rahuel J.L., Holly F.M., Chollet J.P., Belleudy P. J., Yang G. 1989. Modeling of river-bed evolution for be-load sediment mixture. J. of Hydr. Eng., ASCE 115 No. 11 Nov, 1521–1542.
- 18. Ratomski J. 1991. Bed-load material sedimentation in check dams of Flysch Carpathians. Politechnika Krakowska, Kraków, 123, 1–131 (in Polish).
- 19. Sobieszczyk P. 2017. Migrationbarriers removal in the Wisłoka River catchment area and partial restoration of gravel habitats for lithophilous fish along the Wisłoka River reach from the weir in Mokrzec to Pustków. Przegląd Przyrodniczy, XXVIII, 4, 170–192 (in Polish).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a50a139-de11-4927-8708-2077bb5461fe