Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bulk, porous oil-bearing materials acquire various degrees of densification under varying influences of equipment and process parameters with direct bearings on yield during compressive abstraction of oil from such materials. Effects of both aspect ratio and compression cycle on the course of densification were investigated. Mechanical response and oil expression indices were analysed for variances and treatment means were compared using Duncan’s multiple range test. All influence factors had significant effects on mechanical response and oil yield. Significant improvements in achievable deformation and specific energy demand were obtained through repeated induction of compressive stress; compression cycle correlated positively with both deformation and energy demand. Margin for the expenditure of energy became wider as pressure ratio at the oil point became lower. This study reveals that performance of compression schemes may be significantly enhanced through careful application of the pressure ratio.
Czasopismo
Rocznik
Tom
Strony
23--35
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
- Abubakar Tafawa Balewa University, Bauchi Faculty of Engineering and Engineering Technology P.M.B. 0248, Bauchi, Bauchi State, Nigeria
autor
- Czech University of Life Sciences in Prague Faculty of Engineering Kamycka 129, 16521 Praha 6 - Suchdol, Prague, Czech Republic
- Federal College of Forestry Mechanization Department of Agricultural and Bioenvironmental Engineering P.M.B. 2273, Afaka - Kaduna, Kaduna State, Nigeria
Bibliografia
- 1. Ajibola, O. O., Owolarafe, O. K., Fasina, O. O., & Adeeko, K. A. (1993). Expression of oil from sesame seeds. Canadian Agricultural Engineering, 35, 83-88.
- 2. Akangbe, O. L., & Herák, D. (2017). Mechanical behaviour of selected bulk oilseeds under compression loading. Agronomy Research, 15, 941-951. https://doi.org/10.22616/ERDev2017.16.N206.
- 3. Akangbe, O. L., & Herák, D. (2018). Compressive stress, repetitive strain, and optimum expression of oil from bulk volumes of sesame seeds. Journal of Food Process Engineering, October 2017, e12682. https://doi.org/10.1111/jfpe.12682.
- 4. Divišová, M., Herák, D., Kabutey, A., Šleger, V., Sigalingging, R., & Svatoňová, T. (2014). Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading. Scientia Agriculturae Bohemica, 45(3), 180-186. https://doi.org/10.2478/sab-2014-0106.
- 5. Faborode, M. O., & Favier, J. F. (1996). Identification and significance of the oil-point in seed-oil expression. Journal of Agricultural Engineering Research, 65(4), 335-345.
- 6. Faborode, M. O., & O’Callaghan, J. R. (1986). Theoretical analysis of the compression of fibrous agricultural materials. Journal of Agricultural Engineering Research, 35(3), 175-191. https://doi.org/10.1016/S0021-8634(86)80055-5.
- 7. Herák, D., Kabutey, A., Sedláček, A., & Gurdil, G. (2012). Mechanical behaviour of several layers of selected plant seeds under compression loading. Research in Agricultural Engineering, 58(1), 24-29. https://doi.org/10.17221/11/2010-RAE.
- 8. Imole, O. I., Paulick, M., Magnanimo, V., Morgeneyer, M., Montes, B. E. C., Ramaioli, M., Kwade, A., & Luding, S. (2014). Slow stress relaxation behavior of cohesive powders. Powder Technology, 293, 82-93. https://doi.org/10.1016/j.powtec.2015.12.023.
- 9. International Organization for Standardization. (2009). Oilseeds - determination of oil content (reference method) (ISO 659:2009). https://www.iso.org/standard/23297.html.
- 10. Kabutey, A., Herák, D., Chotěborský, R., Dajbych, O., Divišová, M., & Boatri, W. (2013). Linear pressing analysis of Jatropha curcas L . seeds using different pressing vessel diameters and seed pressing heights. Biosystems Engineering, 115(1), 43-49. https://doi.org/10.1016/j.biosystemseng.2012.12.016.
- 11. Kabutey, A., Herak, D., Choteborsky, R., Dajbych, O., Sigalingging, R., & Akangbe, O. L. (2017). Compression behaviour of bulk rapeseed: effects of heat treatment, force, and speed. International Journal of Food Properties, 20, S654-S662. https://doi.org/10.1080/10942912.2017.1306555.
- 12. Kabutey, A., Herák, D., Dajbych, O., Akangbe, O. L., Napitupulu, R., & Pandiangan, S. (2016). Mechanical behaviour of roasted and unroasted oil palm kernels under compression loading. Proceedings of the International Symposium on Agricultural and Mechanical Engineering, 6, 11-14.
- 13. Kaliyan, N., & Morey, R. V. (2009). Constitutive model for densification of corn stover and switchgrass. Biosystems Engineering, 104(1), 47-63. https://doi.org/10.1016/j.biosystemseng.2009.05.006.
- 14. Li, P., Gasmalla, M. A. A., Zhang, W., Liu, J., Bing, R., & Yang, R. (2016). Effects of roasting temperatures and grinding type on the yields of oil and protein obtained by aqueous extraction processing. Journal of Food Engineering, 173, 15-24. https://doi.org/10.1016/j.jfoodeng.2015.10.031.
- 15. Mohsenin, N. N. (1986). Physical properties of plant and animal materials. Vol. I: Structure, physical characteristics and mechanical properties. Gordon and Breach Science Publishers.
- 16. O’Dogherty, M. J., & Wheeler, J. A. (1984). Compression of straw to high densities in closed cylindrical dies. Journal of Agricultural Engineering Research, 29(1), 61-72. https://doi.org/10.1016/0021-8634(84)90061-1.
- 17. Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge University Press.
- 18. Santoso, H., & Inggrid, M. (2014). Effects of temperature , pressure , preheating time and pressing time on rubber seed oil extraction using hydraulic press. Procedia Chemistry, 9, 248-256. https://doi.org/10.1016/j.proche.2014.05.030.
- 19. Savoire, R., Lanoiselle, J.-L., & Vorobiev, E. (2013). Mechanical continuous oil expression from oilseeds : a review. Food and Bioprocess Technology, 6(1), 1-16. https://doi.org/10.1007/s11947-012-0947-x.
- 20. Sirisomboon, P., Kitchaiya, P., Pholpho, T., & Mahuttanyavanitch, W. (2007). Physical and mechanical properties of Jatropha curcas L. fruits, nuts and kernels. Biosystems Engineering, 97, 201-207.
- 21. Tumuluru, J. S. (2014). Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosystems Engineering, 119, 44-57. https://doi.org/10.1016/j.biosystemseng.2013.11.012.
- 22. Wiacek, J., Molenda, M., Horabik, J., & Ooi, J. Y. (2012). Influence of grain shape and intergranular friction on material behavior in uniaxial compression: Experimental and DEM modeling. Powder Technology, 217, 435-442. https://doi.org/10.1016/j.powtec.2011.10.060.
- 23. Willems, P., Kuipers, N. J. M., & De Haan, A. B. (2008a). Hydraulic pressing of oilseeds : Experimental determination and modeling of yield and pressing rates. Journal of Food Engineering, 89, 8-16. https://doi.org/10.1016/j.jfoodeng.2008.03.023.
- 24. Willems, P., Kuipers, N. J. M., & De Haan, A. B. (2008b). Hydraulic pressing of oilseeds: Experimental determination and modeling of yield and pressing rates. Journal of Food Engineering, 89(1), 8-16. https://doi.org/10.1016/j.jfoodeng.2008.03.023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a4ebf88-d3e3-4bf5-a0f1-9574192ba097
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.