Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Research by the Polish Geological Survey has been carried out along the southern Baltic coastal zone over a distance of 38 km. The Baltic Sea is classified as non-tidal, and its southern coasts are built entirely of weakly lithified sedimentary rocks. These deposits form three main types of coast, namely cliffs, barriers and alluvial coasts (wetlands), with the research focusing on the first two. Methods including remote sensing, mapping (geological, hydrogeological), offshore survey (bathymetric and geophysical measurements), laboratory analyses and modelling revealed a number of natural hazards. These are, respectively: (1) permanently occurring hazards, causing material damage such as: landslides, coastal erosion and seabed erosion; (2) incidental hazards such as dune breakage and storm surge overflow and (3) hypothetical threats that may occur in the future, such as hydrogeohazards defined here as flooding resulting from groundwater level rise or more rarely, earthquake threats.
Czasopismo
Rocznik
Tom
Strony
art. no. 5
Opis fizyczny
Bibliogr. 41 poz., fot., rys., tab., wykr.
Twórcy
autor
- Polish Geological Institute – National Research Institute, Marine Geology Branch, Kościerska 5, 80-328, Gdańsk, Poland
autor
- Polish Geological Institute – National Research Institute, Marine Geology Branch, Kościerska 5, 80-328, Gdańsk, Poland
autor
- Polish Geological Institute – National Research Institute, Marine Geology Branch, Kościerska 5, 80-328, Gdańsk, Poland
autor
- Polish Geological Institute – National Research Institute, Marine Geology Branch, Kościerska 5, 80-328, Gdańsk, Poland
autor
- Polish Geological Institute – National Research Institute, Marine Geology Branch, Kościerska 5, 80-328, Gdańsk, Poland
Bibliografia
- 1. Assinovskaya, B.A., Ovsov, M.K., 2008. Seismotectonic position of the Kaliningrad September 21, 2004, earthquake. Izvestiya, Physics of the Solid Earth, 44: 717-727.
- 2. Bunke, D., Leipe, T., Moros, M., Morys, C., Tauber, F., Virtasalo, J.J., Forster, S., Arz, H.W., 2019. Natural and anthropogenic sediment mixing processes in the south-western Baltic Sea. Frontiers in Marine Science, 6: 667.
- 3. Camargo, J.M.R., Silva, M.V.B., Ferreira Junior, A.V., Araujo, T.C.M., 2019. Marine geohazards: a bibliometric-based review. Geosciences, 9: 100.
- 4. Culshaw, M.G., 2018. Geohazards. In: Encyclopedia of Engineering Geology. Encyclopedia of Earth Sciences Series (eds. P. Bobrowsky and B. Marker). Springer, Cham.
- 5. Deng, J., Harff, J., Giza, A., Hartleib, J., Dudzińska-Nowak, J., Bobertz, B., Furmańczyk, K., Zolitz, R., 2017. Reconstruction of coastline changes by the comparisons of historical maps at the Pomeranian Bay, Southern Baltic Sea. Coastal Research Library, 19: 271-287.
- 6. Didier, D., Baudry, J., Bertchez, P., Dumont, D., Sadegh, M., Bismuth, E., Bandet, M., Dugas, S., Sevigny, C., 2019. Multihazard simulation for coastal flood mapping: bathtub versus numerical modelling in an open estuary, Eastern Canada. Journal of Flood Risk Management, 12: 1-19.
- 7. Earlie, C., Masselink, G., Russel, P., 2018. The role of beach morphology on coastal cliff erosion under extreme waves. Earth Surface Processes and Landforms, 43: 1213-1228.
- 8. Furmańczyk, K., Musielak, S., 1999. Circulation systems of the coastal zone and their role in south Baltic morphodynamic of the coast. Quaternary Studies in Poland, Special Issue: 91-94.
- 9. Furmańczyk, K., Musielak, S., 2002. Important features of coastline dynamics in Poland: “nodal points” and “gates” In: Baltic Coastal Ecosystems, Structure, Function and Coastal Zone Management (eds. G. Schernewski and U. Schiewer): 141-147. Springer.
- 10. Hansen, W.R., 1965. Effects of the earthquake of March 27, 1964, at Anchorage, Alaska The Alaska Earthquake, March 27, 1964, Effects on Communities. U.S. Geological Survey Professional Paper, 542, chapter A.
- 11. Harff, J., Mayer, M., 2011. Coastline of the Baltic Sea - zone of competition between geological processes and a changing climate: examples from the Southern Baltic. In: The Baltic Sea Basin (eds. J. Harff, B. Bjoeck and P. Hoth): 149-164. Central and Eastern European Development Studies, Springer.
- 12. Lee, E.M., 2008. Coastal cliff behaviour: observations on the relationship between beach levels and recession rates. Geomorphology, 101: 558-71
- 13. Lidzbarski, M., Taranawska E., 2015. The role of the hydrogeological research on cliff coast in diagnosis and forecasting of the geological hazards (in Polish with English summary). Przegląd Geologiczny, 63: 901-907.
- 14. Meier, H.E.M., Broman, B., Kjellstrom, E., 2004. Simulated sea level in past and future climates of the Baltic Sea. Climate Research, 27: 59-75.
- 15. Miller, D.J., 1960. The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay. Bulletin of the Seismological Society of America, 50: 253-266.
- 16. Mörner, N.A., 2004. Active faults and paleoseismicity in Fennoscandia, especially Sweden. Primary structures and secondary effects. Tectonophysics, 380: 139-157.
- 17. Mörner, N.A., 2008. Tsunami events within the Baltic. Polish Geological Special Papers, 23: 71-76.
- 18. Moskalewicz, D., Sokołowski, R., Fedorowicz, S., 2016. River response to climate and sea level changes during the Late Saalian/Early Eemian in northern Poland - a case study of meandering river deposits in the Chłapowo cliff section. Geologos, 22: 1-14.
- 19. Moskalewicz, D., Szczuciński, W., Mroczek, P., Vaikutiene, G., 2020.Sedimentary record of historical extreme storm surges on the Gulf of Gdańsk coast, Baltic Sea. Marine Geology, 420: 106084.
- 20. Orviku, K., Tonisson, H., Kont, A., Suuroja, S., Anderson, A., 2013. Retreat rate of cliffs and scarps with different geological properties in various locations along the Estonian coast. Journal of Coastal Research, Special Issue, 65: 552-557.
- 21. Palginõmm, V., Orviku, K., Suursaar, U., Kont, A., Tőnisson, H., Rivis, R., 2018. Lessons learned from record-high storm surges and associated inundations in Pärnu, SW Estonia. Journal of Coastal Research, 85: 1391-1395.
- 22. Paprotny, D., Kreibich, H., Morales-Napoles, O., Terefenko, P., Schrotter, K., 2020. Estimating exposure of residential assets to natural hazards in Europe using open data. Natural Hazards and Earth System Science, 20: 323-343.
- 23. Pawłowski, S., 1922. Caracteristique morphologique des cotes Polonaises (in Polish with French summary). Towarzystwo Przyjaciół Nauk o Ziemi, Poznań.
- 24. Piotrowski, A., Szczuciński, W., Sydor, P., Kotrys, B., Rzodkiewicz, M., Krzymińska, J., 2017. Sedimentary evidence of extreme storm surge or tsunami events in the southern Baltic Sea (Rogowo area, NW Poland). Geological Quarterly, 61 (4): 973-986.
- 25. Rudowski, S., 1965. Geology of the Kępa Swarzewska Cliff (in Polish with English summary). Rocznik Polskiego Towarzystwa Geologicznego, 35: 301-318.
- 26. Ryabchuk, D., Spiridonov, M., Zhamoida, V., Nesterova, E., Sergeev, A., 2012. Long term and short term coastal line changes of the Eastern Gulf of Finland. Problems of coastal erosion. Journal of Coastal Conservation, 16: 233-242.
- 27. Spiridonov, M., Ryabchuk, D., Zhamoida, V., Sergeev, A., Sivkov, V., Boldyrev, V., 2011. Geological hazard potential at the Baltic Sea and its coastal zone: examples from the Eastern Gulf of Finland and the Kaliningrad area. In: The Baltic Sea Basin (eds. J. Harff, S. Bjorck and P. Hoth): 337-364. Springer.
- 28. Staud, M., Kordalski, Z., Żmuda, J., 2006. Assessment of modelled sea level rise impacts in the Gdańsk region, Poland. Geological Survey of Finland, Special Paper, 41: 121-130.
- 29. Uścinowicz, G., Szarafin, T., 2018. Short-term prognosis of development of barrier-type coasts (Southern Baltic Sea). Ocean and Coastal Management, 165: 258-267.
- 30. Uścinowicz, G., Kramarska, R., Kaulbarsz, D., Jurys, L., Frydel, J., Przezdziecki, P., Jegliński, W., 2014. Baltic Sea coastal erosion; a case study from the Jastrzębia Góra region. Geologos, 20: 259-268.
- 31. Uścinowicz, G., Jurys, L., Szarafin, T., 2017. The development of unconsolidated sedimentary coastal cliffs (Pobrzeże Kaszubskie, Northern Poland). Geological Quarterly, 61 (2): 491-501.
- 32. Uścinowicz, G., Szarafin, T., Jurys, L., 2019. Tracking cliff activity based on multi temporal digital terrain models - an example from the southern Baltic Sea coast. Baltica, 32: 10-212.
- 33. Uścinowicz, S., Zachowicz, J., Graniczny, M., Dobracki, R., 2004. Geological structure of the southern Baltic coast and related hazards. Polish Geological Institute Special Papers, 15: 61-68.
- 34. Uścinowicz, S., Miotk-Szpiganowicz, G., Gałka, M., Pawlyta, J., Piotrowska, N., Pomian, I., Witak, M., 2013. The rise, development and destruction of the medieval port of Puck in the light of research into palaeoclimate and sea level change. Archaeologia Polona, 49: 87-104.
- 35. Uścinowicz, S., Jegliński, W., Miotk-Szpiganowicz, G., Nowak, J., Pączek, U., Przezdziecki, P., Szefler, K., Poręba, G., 2014. Impact of sand extraction from the bottom of the southern Baltic Sea on the relief and sediments of the seabed. Oceanologia, 56: 857-880.
- 36. Valdmann, A., Käärd, A., Kelpđaitë, L., Kurennoy, D., Soomere, T., 2008. Marine coastal hazards for the eastern coasts of the Baltic Sea. Baltica, 21: 3-12.
- 37. Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30: 377-392.
- 38. Widera, M., 2019. What can be learned about the deposition and compaction of peat from the Miocene lignite seam exposed in the Chłapowo cliff on the Polish coast of the Baltic Sea? Geology, Geophysics and Environment, 45: 111-119.
- 39. Wiejacz, P., 2006. The Kaliningrad earthquakes of September 21, 2004. Acta Geodynamica et Geomaterialia, 3: 7-16.
- 40. Yonggang, J., Chaoqi, Z., Liping, L., Dong, W., 2016. Marine geohazards: review and future perspective. Acta Geologica Sinica, 90: 1455-1470.
- 41. Zeidler, R., 1995. Vulnerability of Poland's coastal areas to sea level rise. Journal of Coastal Research, Special Issue, 22: 99-109.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a4d1ac3-0694-45e4-8dbc-4123f8279b4c