Tytuł artykułu
Autorzy
Kawala-Sterniuk Aleksandra
Mikolajewski Dariusz
Bryniarska Anna
Myslicka Maria
Czarnecki Damian
Junkiert-Czarnecka Anna
Sudol Adam
Mikolajewska Emilia
Pawlowski Mateusz
Wlodarczyk Anna
Walecki Piotr
Gasz Rafał
Libionka Witold
Panczyszak Bartosz
Pelc Mariusz
Zygarlicki Jarosław
Racheniuk Henryk
Bojkowska-Otrebska Katarzyna
Sterniuk Piotr
Gorzelanczyk Edward Jacek
Ferri Raffaele
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Huntington's disease (HD) is a rare, incurable neurodegenerative disorder where fast and non-invasive diagnosis targeting patients' condition plays a crucial role. In modern medicine, various scientific areas are being combined, such as computing, medicine and biomedical engineering. This survey is focused on the most recent image processing methods applied not only for the purpose of diagnosing HD but also for the assessment of its progression severity, in order to contribute to the effort to prolong life of and to improve its quality.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
567--588
Opis fizyczny
Bibliogr. 94 poz., rys., tab.
Twórcy
- Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, Proszkowska 76, 45-758 Opole, Poland
- ”Vital Medic” Hospital, Department of Neurosurgery, Sklodowskiej-Curie 21, 46-200, Kluczbork, Poland
autor
- Kazimierz Wielki University in Bydgoszcz, Institute of Computer Science, Kopernika 1, 85-074 Bydgoszcz, Poland,
- Neuropsychological Research Unit, 2nd Clinic of the Psychiatry and Psychiatric Rehabilitation, Medical University in Lublin, Gluska 1, 20-439 Lublin, Poland
autor
- Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, Proszkowska 76, 45-758 Opole, Poland
autor
- Wroclaw Medical University, Faculty of Medicine, J. Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
autor
- Nicolaus Copernicus University in Torun – Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Preventive Nursing, Jagiellonska 15, 85-067 Bydgoszcz, Poland
autor
- Nicolaus Copernicus University in Torun, Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, M. Curie-Sklodowskiej 9, 85-094 Bydgoszcz, Poland
autor
- University of Opole, Faculty of Natural Sciences and Technology, Kardynala Kominka 6, 45-032 Opole, Poland
autor
- Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Department of Physiotherapy, ul. Technikow 3, 85-801 Bydgoszcz, Poland
autor
- "Vital Medic” Hospital, Department of Neurosurgery, Sklodowskiej-Curie 21, 46-200, Kluczbork, Poland
- St. Hedwig’s Regional Specialist Hospital, Department of Neurosurgery, ul.Wodociagowa 4, 45-221 Opole, Poland
autor
- ”Vital Medic” Hospital, Department of Neurosurgery, Sklodowskiej-Curie 21, 46-200, Kluczbork, Poland
autor
- Jagiellonian University in Krakow–Collegium Medicum, Department of Bioinformatics and Telemedicine, Medyczna 7, 30-688 Krakow, Poland
autor
- Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, Proszkowska 76, 45-758 Opole, Poland
autor
- ”Vital Medic” Hospital, Department of Neurosurgery, Sklodowskiej-Curie 21, 46-200, Kluczbork, Poland
- University Clinical Centre in Gdansk, Department of Neurosurgery, Debinki 7, 80-952 Gdansk, Poland
autor
- ”Vital Medic” Hospital, Department of Neurosurgery, Sklodowskiej-Curie 21, 46-200, Kluczbork, Poland
- Jan Dlugosz University in Czestochowa, Faculty of Health Sciences, Waszyngtona 4/8, 42-217 Czestochowa, Poland
autor
- University of Opole, Institute of Computer Science, Oleska 48, 45-052 Opole, Poland
- University of Greenwich, School of Computing and Mathematical Sciences, Old Royal Naval College, Park Row, SE10 9LS London, UK
autor
- Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, Proszkowska 76, 45-758 Opole, Poland
autor
- Opole University of Technology, Faculty of Physical Education and Physiotherapy, Proszkowska 76, 45-758 Opole, Poland
- Stobrawskie Medical Center in Kup, Clinical Department of Geriatrics, K. Miarki 14, 46-082 Kup, Poland
- University of Opole, Faculty of Medicine–Collegium Medicum, Oleska 48, 45-052 Opole, Poland
autor
- Opole University of Technology, Center for Technology Transfer, Proszkowska 76, 45-758 Opole, Poland
- Kazimierz Wielki University, Institute of Philosophy, Oginskiego 16, 85-092 Bydgoszcz, Poland
- The Society for the Substitution Treatment of Addiction ”Medically Assisted Recovery”, Rzezniackiego 1D, 85-791 Bydgoszcz, Poland
autor
- Sleep Research Centre, Oasi Research Institute–IRCCS, Via Conte Ruggero, 73, 94018 Troina, Italy
Bibliografia
- [1] Ajitkumar A., De Jesus O.: Huntington Disease, StatPearls Publishing, 2021.
- [2] Anwar A., Iqbal A.: Image processing technique for brain abnormality detection, International Journal of Image Processing, vol. 7(1), pp. 51–61, 2013.
- [3] Anwar S.M., Majid M., Qayyum A., Awais M., Alnowami M., Khan M.K.: Medical Image Analysis using Convolutional Neural Networks: A Review, Journal of Medical Systems, vol. 42(11), pp. 1–13, 2018. doi: 10.1007/s10916-018-1088-1.
- [4] Azizi T.: On the fractal geometry of gait dynamics in different neurodegenerative diseases, Physics in Medicine, vol. 14, 100050, 2022. doi: 10.1016/ j.phmed.2022.100050.
- [5] Balaban O.D., Atba¸so˘glu C.E.: Neuropsychiatric Aspects of Huntington’s Dis- ¨ ease, Psikiyatride G¨uncel Yakla¸sımlar, vol. 14(1), pp. 98–112, 2022. doi: 10.18863/ pgy.952664.
- [6] Balaji S., Johnson P., Dvorak A.V., Kolind S.H.: Update on myelin imaging in neurological syndromes, Current Opinion in Neurology, vol. 35(4), pp. 467–474, 2022. doi: 10.1097/WCO.0000000000001078.
- [7] Basodi S., Raja R., Ray B., Gazula H., Sarwate A.D., Plis S., Liu J., Verner E., Calhoun V.D.: Decentralized Brain Age Estimation Using MRI Data, Neuroinformatics, vol. 20, pp. 981–990, 2022. doi: 10.1007/s12021-022-09570-x.
- [8] Beghdadi A., Larabi M.-C., Bouzerdoum A., Iftekharuddin K.M.: A survey of perceptual image processing methods, Signal Processing: Image Communication, vol. 28(8), pp. 811–831, 2013. doi: 10.1016/j.image.2013.06.003.
- [9] Bhatt C., Kumar I., Vijayakumar V., Singh K.U., Kumar A.: The state of the art of deep learning models in medical science and their challenges, Multimedia Systems, vol. 27(4), pp. 599–613, 2021. doi: 10.1007/s00530-020-00694-1.
- [10] Brunelli R.: Template matching techniques in computer vision: theory and practice, John Wiley & Sons, 2009.
- [11] Buyan Dent L., Shannon K.M.: Emergencies in Huntington’s Disease. In: S.J. Frucht (ed.), Movement Disorder Emergencies, pp. 531–541, Springer, 2022. doi: 10.1007/978-3-030-75898-1 29.
- [12] Calero M.G.R., Galiano A.B.J.: Neurodegenerative disease and suicide, Revista Cient´ıfica de la Sociedad de Enfermerıa Neurol´ogica (English ed), vol. 55, pp. 25–32, 2021. doi: 10.1016/j.sedeng.2021.02.003.
- [13] Carson R.E., Naganawa M., Toyonaga T., Koohsari S., Yang Y., Chen M.K., Matuskey D., Finnema S.J.: Imaging of Synaptic Density in Neurodegenerative Disorders, Journal of Nuclear Medicine, vol. 63 (Suppl. 1), pp. 60S–67S, 2022. doi: 10.2967/jnumed.121.263201.
- [14] Cheng J., Liu H.-P., Lin W.-Y., Tsai F.-J.: Machine learning compensates foldchange method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer’s disease, Scientific Reports, vol. 11, 13704, 2021. doi: 10.1038/ s41598-021-93085-z.
- [15] Cheng J., Liu H.-P., Lin W.-Y., Tsai F.-J.: Identification of contributing genes of Huntington’s disease by machine learning, BMC Medical Genomics, vol. 13(1), 176, 2020. doi: 10.1186/s12920-020-00822-w.
- [16] Coppen E.M., Grond J., van der, Hafkemeijer A., Barkey Wolf J.J.H., Roos R.A.C.: Structural and functional changes of the visual cortex in early Huntington’s disease, Human Brain Mapping, vol. 39(12), pp. 4776–4786, 2018. doi: 10.1002/hbm.24322.
- [17] Dong Q., Welsh R.C., Chenevert T.L., Carlos R.C., Maly-Sundgren P., GomezHassan D.M., Mukherji S.K.: Clinical applications of diffusion tensor imaging, Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 19(1), pp. 6–18, 2004. doi: 10.1002/jmri.10424.
- [18] Duch W.: Mind as a shadow of neurodynamics, Physics of Life Reviews, vol. 31, pp. 28–31, 2019. doi: 10.1016/j.plrev.2019.01.023.
- [19] Duijn E., van, Fernandes A.R., Abreu D., Ware J.J., Neacy E., Sampaio C.: Incidence of completed suicide and suicide attempts in a global prospective study of Huntington’s disease, BJPsych Open, vol. 7(5), 2021. doi: 10.1192/bjo.2021.969.
- [20] Esmaeilzadeh M., Ciarmiello A., Squitieri F.: Seeking brain biomarkers for preventive therapy in Huntington disease, CNS Neuroscience & Therapeutics, vol. 17(5), pp. 368–386, 2011. doi: 10.1111/j.1755-5949.2010.00157.x.
- [21] Fernandez H.H., Factor S.A., Hauser R.A., Jimenez-Shahed J., Ondo W.G., Jarskog L.F., Meltzer H.Y., et al.: Randomized controlled trial of deutetrabenazine for tardive dyskinesia: the ARM-TD study, Neurology, vol. 88(21), pp. 2003–2010, 2017. doi: 10.1212/WNL.0000000000003960.
- [22] Fernandez H.H., Stamler D., Davis M.D., Factor S.A., Hauser R.A., JimenezShahed J., Ondo W.G., et al.: Long-term safety and efficacy of deutetrabenazine for the treatment of tardive dyskinesia, Journal of Neurology, Neurosurgery & Psychiatry, vol. 90(12), pp. 1317–1323, 2019. doi: 10.1136/jnnp-2018-319918.
- [23] Ferraro S., Nanetti L., Piacentini S., Mandelli M.L., Bertolino N., Ghielmetti F., Epifani F., et al.: Frontal cortex BOLD signal changes in premanifest Huntington disease: a possible fMRI biomarker, Neurology, vol. 83(1), pp. 65–72, 2014. doi: 10.1212/WNL.0000000000000538.
- [24] Ferreira J.J., Rodrigues F.B., Duarte G.S., Mestre T.A., Bachoud-Levi A.-C., Bentivoglio A.R., Burgunder J.M., Cardoso F., et al.: An MDS Evidence-Based Review on Treatments for Huntington’s Disease, Movement Disorders, vol. 37(1), pp. 25–35, 2022. doi: 10.1002/mds.28855.
- [25] Frank S., Testa C., Edmondson M.C., Goldstein J., Kayson E., Leavitt B.R., Oakes D., et al.: The Safety of Deutetrabenazine for Chorea in Huntington Disease: An Open-Label Extension Study, CNS Drugs, vol. 36(11), pp. 1207–1216, 2022. doi: 10.1007/s40263-022-00956-8.
- [26] Georgiou-Karistianis N., Sritharan A., Farrow M., Cunnington R., Stout J., Bradshaw J., Churchyard A., et al.: Increased cortical recruitment in Huntington’s disease using a Simon task, Neuropsychologia, vol. 45(8), pp. 1791–1800, 2007. doi: 10.1016/j.neuropsychologia.2006.12.023.
- [27] Ghazaleh N., Houghton R., Palermo G., Schobel S.A., Wijeratne P.A., Long J.D.: Ranking the Predictive Power of Clinical and Biological Features Associated With Disease Progression in Huntington’s Disease, Frontiers in Neurology, vol. 12, 678484, 2021. doi: 10.3389/fneur.2021.678484.
- [28] Ghosh R., Tabrizi S.J.: Clinical features of Huntington’s disease. In: C. N´obrega, L. Pereira de Almeida (eds.), Polyglutamine Disorders, pp. 1–28, Springer Cham, 2018. doi: 10.1007/978-3-319-71779-1 1.
- [29] Gundel D., Toussaint M., Lai T.H., Deuther-Conrad W., Cumming P., Schr¨oder S., Teodoro R., et al.: Quantitation of the A2A Adenosine Receptor Density in the Striatum of Mice and Pigs with [18F]FLUDA by Positron Emission Tomography, Pharmaceuticals, vol. 15(5), 516, 2022. doi: 10.3390/ph15050516.
- [30] Hahn S.: Hilbert Transforms in Signal Processing, Artech House, 1996.
- [31] Haines J.L., Conneally P.M., Rao D.C.: Causes of death in Huntington disease as reported on death certificates, Genetic Epidemiology, vol. 3(6), pp. 417–423, 1986. doi: 10.1002/gepi.137003060.
- [32] Han S., Shi Z., Shi Y.: Cultural and Creative Product Design and Image Recognition Based on the Convolutional Neural Network Model, Computational Intelligence and Neuroscience, vol. 2022, 2586042, 2022. doi: 10.1155/2022/2586042.
- [33] Hansson O.: Biomarkers for neurodegenerative diseases, Nature Medicine, vol. 27(6), pp. 954–963, 2021. doi: 10.1038/s41591-021-01382-x.
- [34] He S., Feng Y., Ellen Grant P., Ou Y.: Deep Relation Learning for Regression and Its Application to Brain Age Estimation, IEEE Transactions on Medical Imaging, vol. 41(9), pp. 2304–2317, 2022. doi: 10.1109/TMI.2022.3161739.
- [35] Henderson E.G.A., Vasquez Osorio E.M., Herk M., van, Green A.F.: Optimising a3D convolutional neural network for head and neck computed tomography segmentation with limited training data, Physics and Imaging in Radiation Oncology, vol. 22, pp. 44–50, 2022. doi: 10.1016/j.phro.2022.04.003.
- [36] Henley S.M.D., Bates G.P., Tabrizi S.J.: Biomarkers for neurodegenerative diseases, Current Opinion in Neurology, vol. 18(6), pp. 698–705, 2005. doi: 10.1097/ 01.wco.0000186842.51129.cb.
- [37] Henley S.M.D., Ridgway G.R., Scahill R.I., Kloeppel S., Tabrizi S.J., Fox N.C., Kassubek J., Group E.I.W., et al.: Pitfalls in the use of voxel-based morphometry as a biomarker: examples from Huntington disease, American Journal of Neuroradiology, vol. 31(4), pp. 711–719, 2010. doi: 10.3174/ajnr.A1939.
- [38] Hett K., Giraud R., Johnson H., Paulsen J.S., Long J.D., Oguz I.: PatchBased Abnormality Maps for Improved Deep Learning-Based Classification of Huntington’s Disease. In: A.L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M.A. Zuluaga, S.K. Zhou, D. Racoceanu, L. Joskowicz (eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Lecture Notes in Computer Science, vol. 12267, pp. 636–645, Springer Cham, 2020. doi: 10.1007/978-3-030-59728-3 62.
- [39] Hohenfeld C., Werner C.J., Reetz K.: Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker?, NeuroImage: Clinical, vol. 18, pp. 849–870, 2018. doi: 10.1016/j.nicl.2018.03.013.
- [40] Johnson E.B., Gregory S.: Huntington’s disease: brain imaging in Huntington’s disease. In: J.T. Becker, A.D. Cohen (eds.), Chapter 6 – Progress in Molecular Biology and Translational Science, vol. 165, pp. 321–369, Academic Press, 2019. doi: 10.1016/bs.pmbts.2019.04.004.
- [41] Kandel B.M., Avants B.B., Gee J.C., McMillan C.T., Erus G., Doshi J., Davatzikos C., Wolk D.A.: White matter hyperintensities are more highly associated with preclinical Alzheimer’s disease than imaging and cognitive markers of neurodegeneration, Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 4, pp. 18–27, 2016. doi: 10.1016/j.dadm.2016.03.001.
- [42] Kaur A., Jarial E.P.: Object Recognition using Template matching with the help of Features extraction method, Research Journal of Engineering and Technology (IRJET), vol. 2(5), pp. 178–182, 2015.
- [43] Kloppel S., Chu C., Tan G.C., Draganski B., Johnson H., Paulsen J.S., Kienzle W., Tabrizi S.J., Ashburner J., Frackowiak R.S.J., et al.: Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease, Neurology, vol. 72(5), pp. 426–431, 2009. doi: 10.1212/01.wnl.0000341768.28646.b6.
- [44] Konıckova D., Mensıkova K., Tuckova L., Henykova E., Strnad M., Friedecky D., Stejskal D., Matej R., Kanovsky P.: Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status, Biomedicines, vol. 10(7), 1760, 2022. doi: 10.3390/biomedicines10071760.
- [45] Le Bihan D., Mangin J.-F., Poupon C., Clark Ch.A., Pappata S., Molko N., Chabriat H.: Diffusion tensor imaging: concepts and applications, Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 13(4), pp. 534–546, 2001. doi: 10.1002/ jmri.1076.
- [46] Lemercier P., Cleret de Langavant L., Hamet Bagnou J., Youssov K., Lemoine L., Audureau E., Massart R., Bachoud-Lavi A.C.: Self-Reported Social Relationship Capacities Predict Motor, Functional and Cognitive Decline in Huntington’s Disease, Journal of Personalized Medicine, vol. 12(2), 174, 2022. doi: 10.3390/ jpm12020174.
- [47] Lerner A., Mogensen M.A., Kim P.E., Shiroishi M.S., Hwang D.H., Law M.: Clinical applications of diffusion tensor imaging, World Neurosurgery, vol. 82(1–2), pp. 96–109, 2014. doi: 10.1016/j.wneu.2013.07.083.
- [48] Li H., Zhang H., Johnson H., Long J.D., Paulsen J.S., Oguz I.: MRI subcortical segmentation in neurodegeneration with cascaded 3D CNNs. In: I. Isgum, B.A. Landman (eds.), Medical Imaging 2021: Image Processing, 115960W, 2021. doi: 10.1117/12.2582005.
- [49] Li K.R., Wu A.G., Tang Y., He X.P., Yu C.L., Wu J.M., Hu G.Q., Yu L.: The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review, Molecular Neurobiology, vol. 59, pp. 5935–5954, 2022. doi: 10.1007/s12035-022-02944-x.
- [50] Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., Laak J.A.W.M., van der, Ginneken B., van, S´anchez C.I.: A survey on deep learning in medical image analysis, Medical Image Analysis, vol. 42, pp. 60–88, 2017. doi: 10.1016/j.media.2017.07.005.
- [51] Liu X., Beheshti I., Zheng W., Li Y., Li S., Zhao Z., Yao Z., Hu B.: Brain age estimation using multi-feature-based networks, Computers in Biology and Medicine, vol. 143, 105285, 2022. doi: 10.1016/j.compbiomed.2022.105285.
- [52] Magnotta V.A., Kim J., Koscik T., Beglinger L.J., Espinso D., Langbehn D., Nopoulos P., Paulsen J.S.: Diffusion tensor imaging in preclinical Huntington’s disease, Brain Imaging and Behavior, vol. 3(1), pp. 77–84, 2009. doi: 10.1007/ s11682-008-9051-2.
- [53] Maier A., Syben C., Lasser T., Riess C.: A gentle introduction to deep learning in medical image processing, Zeitschrift f¨ur Medizinische Physik, vol. 29(2), pp. 86–101, 2019. doi: 10.1016/j.zemedi.2018.12.003.
- [54] Marzi C., Giannelli M., Tessa C., Mascalchi M., Diciotti S.: Toward a more reliable characterization of fractal properties of the cerebral cortex of healthy subjects during the lifespan, Scientific Reports, vol. 10(1), 16957, 2020. doi: 10.1038/ s41598-020-73961-w.
- [55] McColgan P., Tabrizi S.J.: Huntington’s disease: a clinical review, European Journal of Neurology, vol. 25(1), pp. 24–34, 2018. doi: 10.1111/ene.13413.
- [56] Meng Y., Zhang J.: An effective behavior recognition method in the video session using convolutional neural network, PLoS One, vol. 17(8), e0266734, 2022. doi: 10.1371/journal.pone.0266734.
- [57] Mestre T.A.: Using Big Data in Movement Disorders: Disease States and Progression in Huntington’s Disease, Movement Disorders, vol. 37(3), pp. 441–443, 2022. doi: 10.1002/mds.28943.
- [58] Mohan A., Sun Z., Ghosh S., Li Y., Sathe S., Hu J., Sampaio C.: A MachineLearning Derived Huntington’s Disease Progression Model: Insights for Clinical Trial Design, Movement Disorders, vol. 37(3), pp. 553–562, 2022. doi: 10.1002/ mds.28866.
- [59] Novak M.J.U., Tabrizi S.J.: Huntington’s disease: clinical presentation and treatment, International Review of Neurobiology, vol. 98, pp. 297–323, 2011. doi: 10.1016/B978-0-12-381328-2.00013-4.
- [60] Olesen M.A., Villavicencio-Tejo F., Quintanilla R.A.: The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders, Translational Neurodegeneration, vol. 11(1), 36, 2022. doi: 10.1186/s40035- 022-00308-y.
- [61] Pace D.F., Dalca A.V., Brosch T., Geva T., Powell A.J., Weese J., Moghari M.H., Golland P.: Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease. In: D. Stoyanov, et al. (eds.), Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA ML-CDS 2018, Lecture Notes in Computer Science, vol. 11045, pp. 334–342, Springer, Cham, 2018. doi: 10.1007/978-3-030-00889-5 38.
- [62] Razzak M.I., Naz S., Zaib A.: Deep Learning for Medical Image Processing: Overview, Challenges and the Future. In: N. Dey, A.S. Ashour, S. Borra (eds.), Classification in BioApps: Automation of Decision Making, pp. 323–350, Springer, Cham, 2018. doi: 10.1007/978-3-319-65981-7 12.
- [63] Rocha N.P., Charron O., Colpo G.D., Latham L.B., Patino J.E., Stimming E.F., Freeman L., Teixeira A.L.: Cerebral blood flow is associated with markers of neurodegeneration in Huntington’s disease, Parkinsonism & Related Disorders, vol. 102, pp. 79–85, 2022. doi: 10.1016/j.parkreldis.2022.07.024.
- [64] Roman O.C., Stovall J., Claassen D.O.: Perseveration and Suicide in Huntington’s Disease, Journal of Huntington’s Disease, vol. 7(2), pp. 185–187, 2018. doi: 10.3233/JHD-170249.
- [65] Roos R.A.C.: Huntington’s disease: a clinical review, Orphanet Journal of Rare Diseases, vol. 5(1), 40, 2010. doi: 10.1186/1750-1172-5-40.
- [66] Rosas H.D., Wilkens P., Salat D.H., Mercaldo N.D., Vangel M., Yendiki A.Y., Hersch S.M.: Complex spatial and temporally defined myelin and axonal degeneration in Huntington disease, NeuroImage: Clinical, vol. 20, pp. 236–242, 2018. doi: 10.1016/j.nicl.2018.01.029.
- [67] Sajedi H., Pardakhti N.: Age Prediction Based on Brain MRI Image: A Survey, Journal of Medical Systems, vol. 43(8), 279, 2019. doi: 10.1007/s10916-019- 1401-7.
- [68] Sassi A., Ouarda W., Amar C.B.: Deep Content Information Retrieval for COVID-19 Detection from Chromatic CT Scans, Arabian Journal for Science and Engineering, vol. 48, pp. 1935–1945, 2022. doi: 10.1007/s13369-022-07083-y.
- [69] Saudou F., Humbert S.: The Biology of Huntingtin, Neuron, vol. 89(5), pp. 910–926, 2016. doi: 10.1016/j.neuron.2016.02.003.
- [70] Schneider P., Wˆejcik G.M., Kawiak A., Kwasniewicz L., Wierzbicki A.: Modeling and Comparing Brain Processes in Message and Earned Source Credibility Evaluation, Frontiers in Human Neuroscience, vol. 16, 808382, 2022. doi: 10.3389/fnhum.2022.808382.
- [71] Schroeter T., G¨uhne F., Schwab M., Drescher R., Axer H.: Differentiation of Reversible Hemichorea Due to Vitamin B12 Deficiency From Huntington Disease Via FDG PET, Clinical Nuclear Medicine, vol. 47(9), pp. 830–831, 2022. doi: 10.1097/RLU.0000000000004313.
- [72] Scott M.L.J., Bromiley P.A., Thacker N.A., Hutchinson C.E., Jackson A.: A fast, model-independent method for cerebral cortical thickness estimation using MRI, Medical Image Analysis, vol. 13(2), pp. 269–285, 2009. doi: 10.1016/ j.media.2008.10.006.
- [73] Shaw L.M., Korecka M., Clark C.M., Lee V.M.-Y., Trojanowski J.Q.: Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics, Nature Reviews Drug Discovery, vol. 6(4), pp. 295–303, 2007. doi: 10.1038/nrd2176.
- [74] Simmons D.A., Mills B.D., Butler Iii R.R., Kuan J., McHugh T.L.M., Akers C., Zhou J., Syriani W., Grouban M., Zeineh M., Longo F.M.: Neuroimaging, Urinary, and Plasma Biomarkers of Treatment Response in Huntington’s Disease: Preclinical Evidence with the p75NTR Ligand LM11A-31, Neurotherapeutics, vol. 18(2), pp. 1039–1063, 2021. doi: 10.1007/s13311-021-01023-8.
- [75] Singh N., Fletcher P.T., Preston J.S., King R.D., Marron J.S., Weiner M.W., Joshi S., Alzheimer’s Disease Neuroimaging Initiative (ADNI): Quantifying anatomical shape variations in neurological disorders, Medical Image Analysis, vol. 18(3), pp. 616–633, 2014. doi: 10.1016/j.media.2014.01.001.
- [76] Solberg O.K., Filkukov´a P., Frich J.C., Feragen K.J.B.: Age at Death and Causes of Death in Patients with Huntington Disease in Norway in 1986-2015, Journal of Huntington’s Disease, vol. 7(1), pp. 77–86, 2018. doi: 10.3233/JHD-170270.
- [77] Solmi M., Pigato G., Kane J.M., Correll C.U.: Treatment of tardive dyskinesia with VMAT-2 inhibitors: a systematic review and meta-analysis of randomized controlled trials, Drug Design, Development and Therapy, vol. 12, pp. 1215–1238, 2018. doi: 10.2147/DDDT.S133205.
- [78] Soni N., Ora M., Bathla G., Nagaraj C., Boles Ponto L.L., Graham M.M., Saini J., Menda Y.: Multiparametric magnetic resonance imaging and positron emission tomography findings in neurodegenerative diseases: Current status and future directions, The Neuroradiology Journal, vol. 34(4), pp. 263–288, 2021. doi: 10.1177/1971400921998968.
- [79] Srivastava A., Hanig J.P.: Quantitative neurotoxicology: Potential role of artificial intelligence/deep learning approach, Journal of Applied Toxicology, vol. 41(7), pp. 996–1006, 2021. doi: 10.1002/jat.4098.
- [80] Swaroop P., Sharma N.: An overview of various template matching methodologies in image processing, International Journal of Computer Applications, vol. 153(10), pp. 8–14, 2016. doi: 10.5120/ijca2016912165.
- [81] Tae W.S., Ham B.J., Pyun S.B., Kang S.H., Kim B.J.: Current clinical applications of diffusion-tensor imaging in neurological disorders, Journal of Clinical Neurology, vol. 14(2), pp. 129–140, 2018. doi: 10.3988/jcn.2018.14.2.129.
- [82] Tereshchenko A., Magnotta V., Epping E., Mathews K., Espe-Pfeifer P., Martin E., Dawson J., Duan W., Nopoulos P.: Brain structure in juvenile-onset Huntington disease, Neurology, vol. 92(17), pp. e1939–e1947, 2019. doi: 10.1212/ WNL.0000000000007355.
- [83] Trovato B., Magr`ı B., Castorina A., Maugeri G., D’Agata V., Musumeci G.: Effects of Exercise on Skeletal Muscle Pathophysiology in Huntington’s Disease, Journal of Functional Morphology and Kinesiology, vol. 7(2), 40, 2022. doi: 10.3390/jfmk7020040.
- [84] Umer F., Habib S.: Critical Analysis of Artificial Intelligence in Endodontics: A Scoping Review, Journal of Endodontics, vol. 148(2), pp. 152–160, 2022. doi: 10.1016/j.joen.2021.11.007.
- [85] Wilson H., De Micco R., Niccolini F., Politis M.: Molecular Imaging Markers to Track Huntington’s Disease Pathology, Frontiers in Neurology, vol. 8, 11, 2017. doi: 10.3389/fneur.2017.00011.
- [86] Wilson H., Dervenoulas G., Politis M.: Structural Magnetic Resonance Imaging in Huntington’s Disease, International Review of Neurobiology, vol. 142, pp. 335– 380, 2018. doi: 10.1016/bs.irn.2018.09.006.
- [87] Wojcik G.M., Masiak J., Kawiak A., Kwasniewicz L., Schneider P., Postepski F., Gajos-Balinska A.: Analysis of Decision-Making Process Using Methods of Quantitative Electroencephalography and Machine Learning Tools, Frontiers in Neuroinformatics, vol. 13, 73, 2019. doi: 10.3389/fninf.2019.00073.
- [88] Yazdan S.A., Ahmad R., Iqbal N., Rizwan A., Khan A.N., Kim D.H.: An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD, Tomography, vol. 8(4), pp. 1905–1927, 2022. doi: 10.3390/tomography8040161.
- [89] Young A.L., Oxtoby N.P., Ourselin S., Schott J.M., Alexander D.C.: A simulation system for biomarker evolution in neurodegenerative disease, Medical Image Analysis, vol. 26(1), pp. 47–56, 2015. doi: 10.1016/j.media.2015.07.004.
- [90] Yuan Q.: A Classroom Emotion Recognition Model Based on a Convolutional Neural Network Speech Emotion Algorithm, PLoS One, vol. 2022, 9563877, 2022. doi: 10.1155/2022/9563877.
- [91] Zhang L., Yue G.H.: Fractal dimension studies of the brain shape in aging and neurodegenerative diseases. In: A. Di Ieva (ed.), The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience, pp. 213–232, 2016, Springer, New York, NY. doi: 10.1007/978-1-4939-3995-4 14.
- [92] Zhang S., Poon S.K., Vuong K. Sneddon A., Loy C.T.: A Deep LearningBased Approach for Gait Analysis in Huntington Disease. In: L. Ohno-Machado, B. S´eroussi (eds.), MEDINFO 2019: Health and Wellbeing e-Networks for All. Studies in Health Technology and Informatics, vol. 264, pp. 477–481, IOS Press, 2019. doi: 10.3233/SHTI190267.
- [93] Zhang Z., Jiang R., Zhang C., Williams B., Jiang Z., Li C.T., Chazot P., Pavese N., Bouridane A., Beghdadi A.: Robust Brain Age Estimation based on sMRI via Nonlinear Age-Adaptive Ensemble Learning, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2146–2156, 2022. doi: 10.1109/TNSRE.2022.3190467.
- [94] Ziukelis E.T., Mak E., Dounavi M.E., Su L., O’Brien J.T.: Fractal dimension of the brain in neurodegenerative disease and dementia: A systematic review, Ageing Research Reviews, 101651, 2022. doi: 10.1016/j.arr.2022.101651.
Uwagi
PL
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a48dcf3-5a65-4698-b418-6a95e48951df